
Welcome! CS240
Principles of Computer Organization

Instructor: Aline Normoyle

 Textbooks:

 Dive into Systems

 Elements of Computing Systems

 Slack: Announcements, links, etc

 Website: Policies, syllabus, etc

 Github: Code repository

 Lab: Park 231

Book Resources

https://diveintosystems.org/

https://nand2tetris.org

2

https://nand2tetris.org/

Course Resources

3

Webpage

https://brynmawr-cs240-f25.github.io/website/

Github

https://github.com/BrynMawr-CS240-f25/

Slack

https://BrynMawr-CS240-f25.slack.com

What you will learn

• C/C++ programming

• How computers work and how they are built
in layers

– Boolean logic, gates, arithmetic

– Machine language, assembly, virtual machines

– High-level language, compilers

– Operating system

• Skills: UNIX, git, basic hardware

4

Computers: Layers of Abstraction

Weeks 01-02: Basic C, Binary Representations,
Principles of computer architecture

Hardware
(Weeks 03-05)

Software
(Weeks 07-12)

Weeks 03-12:

Build a full
computer
emulator in C

Course topics:
From bits to apps

Hardware: Logic gates, Boolean
arithmetic, multiplexors, flip-flops,
registers, RAM units, counters, clock

Architecture: ALU/CPU design and
implementation, addressing modes,
memory-mapped I/O, machine
code, assembly language
programming

Programming Languages: Object-
based design and programming,
abstract data types, scoping rules,
syntax and semantics, references.

6

Compilation: Lexical analysis, top-down
parsing, symbol tables, pushdown
automata, virtual machine, code
generation, implementation of arrays and
objects.

Data structures and algorithms: Stacks,
trees, hash tables, lists, recursion,
arithmetic algorithms, geometric
algorithms,

Engineering: Abstraction /implementation,
modular design, API design and
documentation, unit testing, quality
assurance, programming at the large.

Philosophy: Learning through dissection

7

1950s transistor radio could
be taken apart to see how
they work

Modern computers consist of
small components – it’s
possible to customize and
make your own devices but
not novice-friendly

Demo: 8-Bit Computer

8

https://eater.net/8bit/control

Demo: 8-bit computer

9

Clock

RAM

Processing
Unit

Program
Counter

B Register

Output
Register

Processing
Unit

A Register

ALU
B

u
s

Micro-
instructions

Assembly + Machine Code

Let’s Get Started!

10

Development Environment

A development environment consists of the platform and tools that
you use to write software

Systems programmers need to be able to
– work from terminal using shell commands
– program in low-level languages
– use debugging and profiling tools

This class:
– Operating system: Ubuntu (Linux)
– Programming languages: C, x86_64 assembly language
– Editor: nano, vim, or emacs
– Makefiles for compiling and linking
– git for source control

11

C

C

• High-level programming language
– Java, python, ruby, Javascript, C++, etc

– Imperative (sequence of statements)

– Procedural (structured using functions)

– No classes, built-in types such as strings, lists

• Less abstracted than other languages
– easier to see relationship between code and the

computer’s running of it

– capable of more efficient code

12

From Java to C: Hello World

class Hello {
 public static void main(String[] args) {
 System.out.println(“Hello World”);
 }
}

#include <stdio.h>

int main(int argc, char** argv) {
printf("Hello World!\n“);

 return 0;
}

To compile: javac hello.java
To run: java Hello

To compile: gcc hello.c
To run: ./a.out

1. Compiling a C program translates it to binary (0’s and 1’s)

• The binary file is an executable, meaning “we can run it”

Building and Running a C program

// example C program

int main() {

 int x = 6 + 7;

 printf(“x %d”, x);

 return 0;

}

01010110101
01010101010
10101010101
01010100

C program: binary executable program:

gcc
compiler

14

Operating System (OS)

Computer Hardware
(HW)

2. With OS’s help, HW circuits
 runs binary executable

Slides by Tia Newhall, CS31, Swarthmore

1. Compiling (javac) a Java program translate it to Java byte code
2. Running (java) translates the program to binary (0’s and 1’s)

• The program that translate from byte code to machine code is called the
Java Virtual Machine (JVM)

Building and Running a Java program

// example Java program

class Hello {

 public static void main(String[] args) {

 int x = 6 + 7;

 System.out.println(“Hello World”);

 }

}

01010110101
01010101010

binary
executable
commands

javac
compiler

15

Operating System (OS)

Computer Hardware
(HW)

3. With OS’s help, HW circuits
 runs binary executable

Slide based on those by Tia Newhall, CS31, Swarthmore

ifne 25
goto 38
iinc 2, 1
…

java virtual machine

Java byte code
*.class

All programs must eventually
become binary (0’s and 1’s) to run
on a computer

• The binary code is specific to the hardware

• Higher-level languages (e.g. Java) have more layers of
abstraction between the programmer’s code and the
binary code

– higher-level languages are cross-platform, e.g. the same
program can run on different hardware

• ex. Our C and Java programs run on mac, windows, and linux

16

Makefiles

Idea: Put all build commands into a file

17

$ nano Makefile
$ make hello

CC=gcc
% :: %.c
 $(CC) -g -Wall -Wvla -Werror -Wno-unused-variable $< -o $@

all: hello

clean :
 rm hello

Review: UNIX basics

Ubuntu Desktop has a window manager (lab machines) but we will
mostly be using command-line interfaces (CLI)

terminal – text-based interface for the OS

command line – current line in the terminal; where we issue a
command

command prompt – prefix text at the beginning of the command line

shell – program that executes commands from terminal
– bash – the shell we will use in this class!
– zsh – mac shell
– powershell – windows shell

18

Exercise: Connect to a server

On a laptop or home desktop computer, open a
terminal and ssh to comet

19

$ ssh <username>@comet.cs.brynmawr.edu

Exercise: Edit a file

Write and compile a program, `hello.c`, that
prints “Hello World”

20

$ nano hello.c

$ gcc hello.c
$./a.out

$ gcc hello.c –o hello
$./hello

Reference: Some useful commands

• ls – list all directories

• cd, mkdir, mv, cp, rm – change directory, make directory, move, copy, remove

• cat, less, more – showing files

• javac, gcc, make – compiling programs

• vi, nano, emacs – editing files

• grep, find – searching files

• man – read documentation (RTFM: “Read the fine manual”)

• ssh <username>@goldengate.cs.brynmawr.edu – log into CS server

• git – source control

21

Working with paths from terminal

• What are files? What are directories?

• path - full name of a file or directory that indicates the file/directory location

within the file system

– Absolute paths: path from the root of the file system to the file

– Relative paths: path from current working directory to the file

• File extension: Tells the OS what type of data is in the file (ex: *.txt,
*.jpg, etc)

22

Special directories

.. ← the parent directory (two dots)

. ← the current directory (one dot)

/ ← the root directory

/home/<username> ← your home directory

~ ← your home directory

Example

What is the absolute path of hello.txt?

What is the absolute path of hello.txt from the A
directory?

What is the relative path of `hello.txt` from
- the root directory?
- the A directory?
- the B directory?

root
-- A
---- hello.txt
-- B

Working with paths

25

What is the absolute path of hello.txt?

If we are in the directory A, what is the relative path of hello.txt?

If we are in the directory B, what is the relative path of hello.txt?

root
-- home
---- ren
------ A
---- stimpy
------ B
------ C
-------- hello.txt

Example: Working with paths

26

alinen@goldengate:~/cs223/orig-class-examples/lec0$ cat ../../hello.c
#include <stdio.h>
int main() {
 printf("Hello World\n");
}
alinen@goldengate:~/cs223/orig-class-examples/lec0$ cat ~/cs223/hello.c
#include <stdio.h>
int main() {
 printf("Hello World\n");
}
alinen@goldengate:~/cs223/orig-class-examples/lec0$ cat /home/alinen/cs223/hello.c
#include <stdio.h>
int main() {
 printf("Hello World\n");
}

Draw the directory hierarchy after the
following commands

$ pwd
/home/alinen
$ mkdir A
$ cd A
$ mkdir Z
$ touch talk.c
$ cd ..
$ touch listen.c
$ cd
$ touch sing.c

27

File properties

alinen@goldengate:~/cs223/class-examples/lec0$ vi hello.c
alinen@goldengate:~/cs223/class-examples/lec0$ gcc hello.c
alinen@goldengate:~/cs223/class-examples/lec0$ a.out
a.out: command not found
alinen@goldengate:~/cs223/class-examples/lec0$./a.out
Hello World
alinen@goldengate:~/cs223/class-examples/lec0$ ls -l
total 40
-rwxr-xr-x 1 alinen faculty 16696 Jan 18 14:42 a.out
-rw-r--r-- 1 alinen faculty 76 Jan 18 14:42 hello.c
-rw-r--r-- 1 alinen faculty 416 Jan 18 13:58 Hello.class
-rw-r--r-- 1 alinen faculty 104 Jan 18 13:58 Hello.java
-rw-r--r-- 1 alinen faculty 934 Jan 18 14:03 Sqrt.class
-rw-r--r-- 1 alinen faculty 197 Jan 18 14:03 Sqrt.java

Your editor and you!

You are encouraged to learn a terminal editor this
semester

● Nano
● Emacs
● Vim

Learning a good editor will help you write code faster

You will need to use one of these editors for coding
activities in lab

Nano

30

Emacs

31

NOTE: F10 to use the menu

Vim

● To open: `vi <filename>`

● To quit: Press escape, then `:q!`

● To save: Press escape, then `:w`

● Two modes: insert and command mode

○ insert mode: type text in the usual way: ‘i’ enters insert
mode at current cursor position

○ Escape enters command mode: search, navigate,
copy/paste/delete, etc

32

Course Philosophy: Practice!
• Lectures (mandatory): Slides with integrated activities

• Labs (mandatory): Check-ins, hands-on projects

• 2 midterms, oral exam during exam week

• Accommodations: Need at least 2 weeks prior notice to make
arrangements

Important: Learn independence, e.g. doing the work yourself

• CS Goals: UNIX, git, terminal editors, C programming, how computing
systems work

• Life Goals: Develop skills, strategies, and knowledge for analytical thinking

33

My advice

Read the textbook!

Show up: lectures and labs

Do the work:
– ~ 10 hour week commitment (4.5 hrs + 5 hrs)

– Lots of support is available: slack, pre/post class/lab,
office hours

– Take hand-written notes

– Practice exams, quizzes and coding activities in ways
that mimic the test environments

– Do homework and study with phones LOCKED AWAY
IN ANOTHER ROOM and distracting web pages
CLOSED.

34

My advice

Keep your commitments: 80% of work is consistently showing up

Try your best without beating yourself up. Keep your sense of humor!

Assess your pre-requisite knowledge and fill gaps – allow for more
time if necessary

Find community: get to know your classmates and fellow majors. Form
a study group. Work together in the labs.

Build habits that are forward leading
– Focus, organization, taking responsibility for your choices
– Resist short-term gains that can sabotage you in the long-term. Avoid

over-committing.
– Take care of yourself: sleep, exercise, socialize

35

	Slide 1: Welcome! CS240 Principles of Computer Organization
	Slide 2: Book Resources
	Slide 3: Course Resources
	Slide 4: What you will learn
	Slide 5: Computers: Layers of Abstraction
	Slide 6: Course topics: From bits to apps
	Slide 7: Philosophy: Learning through dissection
	Slide 8: Demo: 8-Bit Computer
	Slide 9: Demo: 8-bit computer
	Slide 10: Let’s Get Started!
	Slide 11: Development Environment
	Slide 12: C
	Slide 13: From Java to C: Hello World
	Slide 14: Building and Running a C program
	Slide 15: Building and Running a Java program
	Slide 16: All programs must eventually become binary (0’s and 1’s) to run on a computer
	Slide 17: Makefiles
	Slide 18: Review: UNIX basics
	Slide 19: Exercise: Connect to a server
	Slide 20: Exercise: Edit a file
	Slide 21: Reference: Some useful commands
	Slide 22: Working with paths from terminal
	Slide 23: Special directories
	Slide 24: Example
	Slide 25: Working with paths
	Slide 26: Example: Working with paths
	Slide 27: Draw the directory hierarchy after the following commands
	Slide 28: File properties
	Slide 29: Your editor and you!
	Slide 30: Nano
	Slide 31: Emacs
	Slide 32: Vim
	Slide 33: Course Philosophy: Practice!
	Slide 34: My advice
	Slide 35: My advice

