
Agenda

Tools for C programming: C Tutor, GDB, and Valgrind

Binary and data representations

Unsigned integers

Signed integers

Addition and subtraction

Overflow

Signed extension

GDB/Valgrind Demo: bigfish.c

// allocate space for two int arrays
 bigfish = (int *)malloc(sizeof(int)*10);
 littlefish = (int *)malloc(sizeof(int)*10);
 for (i=0; i < 10; i++) {
 bigfish[i] = 10+i;
 littlefish[i] = i;
 }
 print_array(bigfish,10, "bigfish");
 print_array(littlefish,10, "littlefish");
 for (i=0; i < 13; i++) {
 bigfish[i] = 66+i;
 }
 printf("\nafter loop:\n");
 print_array(bigfish,10, "bigfish");
 print_array(littlefish,10, "littlefish");

GDB/Valgrind Demo : bigfish.c

// allocate space for two int arrays
 bigfish = (int *)malloc(sizeof(int)*10);
 littlefish = (int *)malloc(sizeof(int)*10);
 for (i=0; i < 10; i++) {
 bigfish[i] = 10+i;
 littlefish[i] = i;
 }
 print_array(bigfish,10, "bigfish");
 print_array(littlefish,10, "littlefish");
 for (i=0; i < 13; i++) {
 bigfish[i] = 66+i;
 }
 printf("\nafter loop:\n");
 print_array(bigfish,10, "bigfish");
 print_array(littlefish,10, "littlefish");

bigfish array:
 10 11 12 13 14 15 16 17 18 19
littlefish array:
 0 1 2 3 4 5 6 7 8 9

after loop:
bigfish array:
 66 67 68 69 70 71 72 73 74 75
littlefish array:
 78 1 2 3 4 5 6 7 8 9
Segmentation fault (core dumped)

GDB/Valgrind Demo: badprog.c

int findAndReturnMax(int *array1, int len, int max) {
 int i;
 if (!array1 || (len <=0)) {
 return -1;
 }
 max = array1[0];
 for (i=1; i <= len; i++) {
 if (max < array1[i]) {
 max = array1[i];
 }
 }
 return 0;
}

int main(int argc, char *argv[]) {
 int arr[5] = { 17, 21, 44, 2, 60 };
 int max = arr[0];

 if (findAndReturnMax(arr, 5, max) != 0) {
 printf("strange error\n");
 exit(1);
 }
 printf("max value in the array is %d\n", max);
 return 0;
}

What is the output of this program supposed to be?

Binary and Data Representation

Data is stored as binary signals

 e.g. they can either be on or off

Each signal corresponds to a single bit

All data can be represented with bits

 more complicated data -> needs more bits

Binary and data representation

Smallest unit of addressable memory is a byte

Memory address 0: 01010101
Memory address 1: 10101010
Memory address 2: 00001111

A byte is 8 bits

A word is the default size of memory that the hardware moves around

 either 32 bits or 64 bits

Why define variables? Why have types?

Variable types in C

• Different Types have different number of bytes:

1 byte: char, unsigned char (no negative values)

2 bytes: short, unsigned short

4 bytes: int, unsigned int, float

8 bytes: long long, unsigned long long, double

4 or 8 bytes: long, unsigned long

NOTE: On a 64 bit machine, pointers are ___ bytes

Example: Memory can be interpreted in
different ways depending on the context
Consider the data

 0b010011000110111101001100 (0x4C6F4C)

The above bits can mean any of the following

LOL 5,009,228

Example: ASCII
American Standard Code for Information Interchange

Example: Simple image

Figure 2. The (a) image representation, (b) two-bit cell representation, and (c) byte representation of a
simple fish image. Dive Into Systems

Number bases and unsigned integers

Recall: Decimal numbers

 5163 = 5 * 103 + 1 * 102 + 6 * 101 + 3 * 100

What is the general formula?

Notation

0b (zero-b) denotes a binary number, e.g 0b 1001

0x (zero-x) denotes a hexadecimal number, e.g. 0xE3

0 (zero) denotes an octal number, e.g. 0644

d0 denotes the lowest order bit

dN-1 denote the highest order bit

Other popular notation: 7410 = 7 * 101 + 4 *100

Hexadecimal

Base 16: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Compact way to represent binary numbers

 Octal (base 8) is sometimes used

Dec Bin Hex Dec Bin Hex Dec Bin Hex Dec Bin Hex

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Exercise: Hexadecimal

Convert this binary number to hexadecimal

 0b010011000110111101001100

Convert this hexadecimal number to binary

 0x8045EF

Hexadecimal to decimal

Convert 0x3CD0 to decimal

Decimal to hexadecimal

Idea: Compute digits from highest order to lowest order

Example: divide by 164, then 163, then by 162, etc

 Each step i from N-1 to 0 do

 ith digit = floor(input/16i)

 input = input % 16i

Exercise: Convert 974210 to hexadecimal

Digit Place Input Divisor Digit (/) Remainder (%)

d4 164

d3 163

d2 162

D1 161

d0 160

Decimal to binary

Can use the same approach, but there is an easier way: repeated
division

Idea: Repeatedly divide by 2 and check the parity

 Each step i from 0 to N-1 do

 ith digit = input % 2

 input = floor(input / 2)

Exercise: Convert 42210 to binary

Unsigned integers

Numbers ranging from 0 to a positive max value

Example: Represent 4 using a 4-bit unsigned integer

Example: Represent 34 using a 1 byte unsigned integer (e.g. a char)

Unsigned integer ranges

What is the largest number that can be stored in 4 bits?

What is the largest number that can be stored in 4 bytes?

Signed integers

Modern systems use a method called two’s compliment

 highest order bit encodes the sign (0 -> positive; 1 -> negative)

 advantage: allows pos/neg numbers to be treated the same in
 hardware

Two’s compliment

Suppose we have N bits to represent a signed integer. The formula is

Example: What is 1001 interpreted as a signed integer? As an unsigned integer?

Exercise: Signed integers

Convert the following signed integer to decimal: 0b 0110

Convert the following signed integer to decimal: 0b 1111

Negation

To negate a two’s compliment signed integer

 flip the bits

 add one

Example: Compute -5 as a 4-bit signed integer

Question

If we use N bits, what is the range of unsigned integers we can
represent?

If we use N bits, what is the range of signed integers we can represent?

Binary addition

Works like decimal addition: we carry over values when we reach our
max digit.

Example: Add 2 + 8 as 4 bit unsigned binary numbers

Binary addition

Possible outcomes when considering two binary digits and 1 carry digit

Inputs Outputs

Digit A Digit B Carry in Sum Carry out

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Binary subtraction

Idea: X – Y is the same as X + (-Y)

Therefore, negate the second operand and then add

Example: Compute 7-2 as unsigned 4-bit integers

Unsigned Overflow
When we try to store a value too large to fit into a data type, we get
overflow.

Example: Add 12 + 7 as unsigned 4 bit
numbers

Example: Add 2 - 3 as unsigned 4 bit
numbers

Unsigned Overflow
Rule: If the carry-out doesn’t match the carry-in, the computation has
overflowed

When the carry-in = 0, we are adding
and so the result should be larger.
However, when the carry-out = 1, the
result will be smaller.

When the carry-in = 1, we are
subtracting and so we want the
result to be smaller. However, when
the carry-out = 0, the result will be
larger.

Demo: What is the output of this program?

#include <stdio.h>

int main() {
 unsigned int a = 0;
 for (a = 5; a >= 0; a--) {
 printf("Message!\n");
 }
 return 0;
}

Signed overflow
When we try to store a value too large OR too small to fit into a data
type, we get overflow.

Example: Compute -6 - 3 as signed 4
bit numbers

Example: Compute 5 + 3 as signed 4
bit numbers

Signed overflow
Rule: When the operands have different sign, overflow is impossible.

When the operands have the same sign, overflow occurs when the highest order
bit of the result does not match the operand.

Idea: Moving towards zero is safe with
signed integers.

Exercise: Compute 3 - 2 as signed 4-bit numbers

What if you used unsigned 4-bit data types instead?

Exercise: Compute 3 - 4 as signed 4-bit numbers

What if you used unsigned 4-bit data types instead?

Exercise: Add 7 + 3 as signed 4-bit numbers

What if you used unsigned 4-bit data types instead?

Signed extension

What happens when you perform an arithmetic operation on numbers
with different sizes? signed extension

For unsigned values, prepend 0

For signed values, prepend the leftmost bit

Example: Signed extension

Add 5 and -5 as 8 bit numbers

	Slide 1: Agenda
	Slide 2: GDB/Valgrind Demo: bigfish.c
	Slide 3: GDB/Valgrind Demo : bigfish.c
	Slide 4: GDB/Valgrind Demo: badprog.c
	Slide 5: Binary and Data Representation
	Slide 6: Binary and data representation
	Slide 7: Why define variables? Why have types?
	Slide 8: Variable types in C
	Slide 9: Example: Memory can be interpreted in different ways depending on the context
	Slide 10: Example: ASCII
	Slide 11: Example: Simple image
	Slide 12: Number bases and unsigned integers
	Slide 13: Notation
	Slide 14: Hexadecimal
	Slide 15: Exercise: Hexadecimal
	Slide 16: Hexadecimal to decimal
	Slide 17: Decimal to hexadecimal
	Slide 18: Exercise: Convert 974210 to hexadecimal
	Slide 19: Decimal to binary
	Slide 20: Exercise: Convert 42210 to binary
	Slide 22: Unsigned integers
	Slide 23: Unsigned integer ranges
	Slide 24: Signed integers
	Slide 25: Two’s compliment
	Slide 26: Exercise: Signed integers
	Slide 27: Negation
	Slide 28: Question
	Slide 29: Binary addition
	Slide 30: Binary addition
	Slide 31: Binary subtraction
	Slide 32: Unsigned Overflow
	Slide 33: Unsigned Overflow
	Slide 34: Demo: What is the output of this program?
	Slide 35: Signed overflow
	Slide 36: Signed overflow
	Slide 37: Exercise: Compute 3 - 2 as signed 4-bit numbers
	Slide 38: Exercise: Compute 3 - 4 as signed 4-bit numbers
	Slide 39: Exercise: Add 7 + 3 as signed 4-bit numbers
	Slide 40: Signed extension
	Slide 41: Example: Signed extension

