
Agenda

How a computer runs a program

Von Neuman architecture overview

Building a CPU

Logic gates

Circuits

ALU (Addition, Subtraction, Multiplexor)

Storage (R-S Latches, registers)

Control

1

1. Compiling a C program translates it to binary (0’s and 1’s)

• The binary file is an executable, meaning “we can run it”

Recall: Building and Running a C program

// example C program

int main() {

 int x = 6 + 7;

 printf(“x %d”, x);

 return 0;

}

01010110101
01010101010
10101010101
01010100

C program: binary executable program:

gcc
compiler

2

Operating System (OS)

Computer Hardware
(HW)

2. With OS’s help, HW circuits
 runs binary executable

Slides by Tia Newhall, CS31, Swarthmore

1. Compiling a C program translates it to binary (0’s and 1’s)

• The binary file is an executable, meaning “we can run it”

Recall: Building and Running a C program

// example C program

int main() {

 int x = 6 + 7;

 printf(“x %d”, x);

 return 0;

}

01010110101
01010101010
10101010101
01010100

C program: binary executable program:

gcc
compiler

3

Operating System (OS)

Computer Hardware
(HW)

2. With OS’s help, HW circuits
 runs binary executable

Slides by Tia Newhall, CS31, Swarthmore

Our focus

Von Neumann Architecture (1945)

Computer is a generic computing machine
• Can be used to compute anything that is

computable

• Based on Alan Turing’s Universal Turing Machine

Uses a stored program model
• Both program & data loaded into computer memory

• No distinction between data & instructions in
memory

All modern computers based
on the Von Neumann model

4
Slides by Tia Newhall, CS31, Swarthmore

Early computers

5

Earlier computers used fixed
program encoded on machine,
data loaded and run by fixed
program

Left, The difference engine
(Babbage) could estimate
polynomial functions useful for
making tables

Von Neumann Model

units connected by buses (wires) to communicate

buses

Memory
Unit Input

 Units
Output
Units

Processing
Unit

Control
Unit

The CPU

6
Slides by Tia Newhall, CS31, Swarthmore

Von Neumann Model

5 units connected by buses (wires) to communicate

Processing & Control Units: implement CPU

 execute program instructions on program data

buses

Memory
Unit Input

 Units
Output
Units

Processing
Unit

Control
Unit

The CPU

7
Slides by Tia Newhall, CS31, Swarthmore

Von Neumann Model

5 units connected by buses (wires) to communicate

Memory: stores program instructions and data

memory is addressable: addr 0, 1, 2, ...

buses

Memory
Unit Input

 Units
Output
Units

Processing
Unit

Control
Unit

The CPU

8
Slides by Tia Newhall, CS31, Swarthmore

Von Neumann Model

5 units connected by buses (wires) to communicate

Input, Output: interface to computer

 trigger actions: load program, initiate execution, ...

display/store results: to terminal, save to disk, ...

buses

Memory
Unit Input

 Units
Output
Units

Processing
Unit

Control
Unit

The CPU

9
Slides by Tia Newhall, CS31, Swarthmore

Instruction Execution: controlled by Control Unit

1. Fetch instruction from Memory (its addr in PC) into IR (and
increment address in PC to next instruction address)

2. Decode instruction bits to determine operation & operands

3. Execute instruction on ALU

4. Store instruction results to Memory

cntrl bus
addr bus

data bus

Memory
Unit

Processing
Unit

ALU registers

Control
Unit

PC IR
The CPU:

Regs

Cache

 Top of Memory
 Hierarchy
 (on chip)

10

Von Neumann Model: CPU/Memory

Slides by Tia Newhall, CS31, Swarthmore

Example: Adding two numbers

Example: Adding two numbers

Digital Computers

• All input & output are discrete and binary

• data, instructions, control signals (0: no voltage, 1: voltage)

• execution is driven by a clock (will discuss later)

• time is discrete: time 1, time 2, time 3, ...

• To run program, need different types of circuits

CPU
ALU, Cntrl,

Storage

RAM
Cntrl & Storage

bus

Circuits to
store program
data and instructions
and support reading
and writing
addressable storage
locations

Circuits to
execute
program
instructions
that act on
program data

13
Slides by Tia Newhall, CS31, Swarthmore

Building a CPU (model)

Levels of abstraction: start with very simple
functionality, and add complexity

CPU

ALU, Storage, Control

Complex Circuits

Simple Circuits

Basic Logic Gates

Build up complex
Functionality

Starting with simple
Functionality

14
Slides by Tia Newhall, CS31, Swarthmore

Logic Gates: Basic Building Blocks

Input: Boolean value(s) (high and low voltages for 1 and 0)
Output: Boolean value (0 or 1) result of boolean function
 Always present, but may change when inputs change

 A B A & B A | B ~A

 0 0 0 0 1

 0 1 0 1 1

 1 0 0 1 0

 1 1 1 1 0

a

b
out

out = a & b

And

a

b
out

out = a | b

Or

a out

out = ~a

Not
C bit-wise
operators:
&: AND

|: OR

~: NOT

15
Slides by Tia Newhall, CS31, Swarthmore

Review: C Bitwise Operators

Bit-wise operators: applied to bits of operand(s)

 & (AND) | (OR) ^(XOR) ~(NOT)

 01010101 01101010 10101010 ~10101111

 & 00100001 | 10111011 ^ 01101001 01010000

 00000001 11111011 11000011

Evaluate Differently than C logical operators

 char x=8, y=7;

 x & y // 8 bitwise AND 7 is 0

 x && y // 8 logical AND 7 is a non-zero value (evals to true)

16
Slides by Tia Newhall, CS31, Swarthmore

More Logic Gates

a

b out

out = ~ (a | b)

NOR

a

b out

out = ~ (a & b)

NAND

Note the circle on the
output.
This means “negate it.”

A

B (A | B)
OR

~ (A | B)

NOTNOR ==

 A B A NAND B A NOR B

 0 0 1 1

 0 1 1 0

 1 0 1 0

 1 1 0 0

17
Slides by Tia Newhall, CS31, Swarthmore

Combinatorial Logic Circuits
Idea: Combine logic circuits together to implement
higher-level functionality

Use this new functionality as a building block for even
higher level functionality (Abstraction!)

Acyclic Network of Gates

Inputs Outputs

Outputs are boolean functions of inputs

Outputs continuously respond to changes to inputs

18
Slides by Tia Newhall, CS31, Swarthmore

Exercise: Draw the truth table for this
circuit

19

And Or Not

X

Y
Output

X Y Output

Exercise: Build a circuit that implements
XOR using AND, OR, and NOT

Step 1: Construct the logic table

20

Exercise: Build a circuit that implements
XOR using AND, OR, and NOT

Step 2: Find an expression for X^Y using binary
operations

21

Exercise: Build a circuit that implements
XOR using AND, OR, and NOT

Step 3: Translate the expression to a circuit

22

Abstractions in action

23

XOR out = A^BA

B

Treat XOR Circuit as a building block for other circuits!

Arithmetic logic unit (ALU)

The ALU performs addition, subtraction, or, add, etc.

• Adder

• Subtractor

• Multiplication / Division (we are not covering these)

• Bit-wise AND, OR, NOT, XOR

• Bit shift operations

• Goal: reuse hardware components whenever
possible

24

ALU: a 1-bit adder circuit

• 1 bit adder: A+B

• Two outputs:

1. Obvious one: the sum

2. Other one: ??

A B Sum(A+B) Cout

 0 0

 0 1

 1 0

 1 1

25

Cout

1-bit
adder

A

B Sum

Which of these circuits is a one-bit adder?

A

B
Sum

Cout

A

B
Sum

Cout

A

B

Cout

Sum A

B
Sum

Cout

A: B:

C: D:

Nand

Or

NotXor

And

26
Slides by Tia Newhall, CS31, Swarthmore

More than one bit addition?

• When adding, sometimes have carry in too

 00011010

 + 00001111

27
Slides by Tia Newhall, CS31, Swarthmore

One-bit (full) adder

Need to include:

Carry-in & Carry-out

A B Cin Sum Cout

 0 0 0 0 0

 0 1 0 1 0

 1 0 0 1 0

 1 1 0 0 1

 0 0 1 1 0

 0 1 1 0 1

 1 0 1 0 1

 1 1 1 1 1

• When is Sum 1?

• When is Cout 1?

~Cin & (A^B) | Cin & ~(A^B) == (Cin ^(A^B))

(A & B) | ((A^B) & Cin)

28

1-bit
adder

Cin

Cout

A
B Sum

Slides by Tia Newhall, CS31, Swarthmore

One-bit (full) adder

Need to include:

Carry-in & Carry-out

A B Cin Sum Cout

 0 0 0 0 0

 0 1 0 1 0

 1 0 0 1 0

 1 1 0 0 1

 0 0 1 1 0

 0 1 1 0 1

 1 0 1 0 1

 1 1 1 1 1

= 1-bit
adder

Cin

Cout

A

B Sum

Sum: Cin ^ (A^B)

Cout: (A&B)|((A^B)& Cin)

29
Slides by Tia Newhall, CS31, Swarthmore

Multi-bit Adder (Ripple-carry Adder)

1-bit
adder

0 (Cin)

Cout

A0

B0 Sum0

1-bit
adder

Cout

A1

B1 Sum1

1-bit
adder

Cout

A3

B3 Sum3

1-bit
adder

Cout

A2

B2 Sum2

…

1-bit
adder

Cout

AN-1

BN-1 SumN-1

30
Slides by Tia Newhall, CS31, Swarthmore

Multi-bit Adder (Ripple-carry Adder)

0
 (Cin)

1-bit
adder

Cout

A0B0

Sum0

1-bit
adder

Cout

A1B1

Sum1

1-bit
adder

Cout

A2B2

Sum2

1-bit
adder

Cout

An-1Bn-1

Sumn-1

…

0 . . . 0 1 1 A

1 . . . 1 1 0 B

1 . . . 0 0 1 SUM

Slides by Tia Newhall, CS31, Swarthmore

Three-bit Adder (Ripple-carry Adder)

010
+ 011

=
3-bit

adder

A0

A1
A2

B0

B1

B2

Carry out

Carry in

Sum0

Sum1

Sum2

1-bit
adder

0

0

1

1-bit
adder

1

1 1-bit
adder

0

0

1

1

0

1

0

0
=101

Slides by Tia Newhall, CS31, Swarthmore

0 0 1 1 A

1 1 1 0 B

0 : Cin

A0

Cout

B0

Sum0

1-bit
adder

1 0 0 1 SUM (A+B)

A1

Cout

B1

Sum1

1-bit
adder

A2

Cout

B2

Sum2

1-bit
adder

A3

Cout

B3

Sum3

1-bit
adder

0
(Cin)

4-bit
adderCout

AB

Sum

4

11

4

4

Abstraction!

Can treat Multi-bit adder as a unit:
as a building block for larger, more
complicated functionality.

4-bit
adder

Slides by Tia Newhall, CS31, Swarthmore

4-bit adder real life example

34

How to Implement Subtraction Circuit?

Q: what is relationship between Add & Sub?

A – B == A + (-B)

A – B == A + (~B) + 1

35

A0

A1
A2

B0

B1

B2

Carry out

Carry in (0: Add, 1: Sub)

Sum0

Sum1

Sum2

Bit flipper?

4-bit
Adder/Sub

A3

B3

Sum3

Slides by Tia Newhall, CS31, Swarthmore

How to Implement Subtraction Circuit?

Q: what is relationship between Add & Sub?

A – B == A + (~B) + 1

36

A0

A1
A2

B0

B1

B2

Carry out

Carry in (0: Add, 1: Sub)

Sum0

Sum1

Sum2

XOR

4-bit
Adder/Sub

A3

B3

Sum3

C0 C1 C2
C3

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

At any given time, we
only want the output
from ONE of these!

 (either doing an OR
 op or an ADD op,
 but not both at
 same time)

37

Out0
Out1
Out2

Slides by Tia Newhall, CS31, Swarthmore

Simple 3-bit ALU: Add and bitwise OR
3-bit inputs
A and B:

Extra input: control signal to select Sum vs. OR

Circuit:
takes inputs Sum and
OR outputs only one

of them, based on
control signal

ex. if cntrl 0 output SUM
 if cntrl 1 ouput OR

38

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

Or0

Or2

Or1

Out0
Out1
Out2

Slides by Tia Newhall, CS31, Swarthmore

Draw the truth tables for this circuit

Control
Signal

Input 1

Input 2

A:

39

And

Or

Not

Slides by Tia Newhall, CS31, Swarthmore

Draw the truth tables for this circuit

Control
Signal

Input 1

Input 2

B:

40

And

Or

Not

Slides by Tia Newhall, CS31, Swarthmore

Draw the truth tables for this circuit

Control
Signal

Input 1

Input 2

C:

41

And

Or

Not

Slides by Tia Newhall, CS31, Swarthmore

Multiplexor: Chooses an input value

Inputs: 2N data inputs, N signal bits

Output: is one of the 2N input values

• Control signal s, chooses the input for output

• When s is 1: choose a, when s is 0: choose b

out
b

s

a out = (s & a)|(~s & b)

1 bit 2-way MUX

42
Slides by Tia Newhall, CS31, Swarthmore

Out = (s & A) | (~s & B)

1 0 1 1 A

1 1 0 1 B

A2B2

Out2

A1B1

Out1

A0B0

Out0

A3B3

Out3

1 0 1 1 Out

1 bit
2-way
MUX

1 bit
2-way
MUX

1 bit
2-way
MUX

1 bit
2-way
MUX

s

s

B

A
Out

4 bit
2-way
MUX

1

4

4
4

4-bit 2-way MUX 1-bit 2-way Muxes

Corresponding bits of A and B fed through a 1-bit MUX

Abstraction!
43

Slides by Tia Newhall, CS31, Swarthmore

32 bit 2-Way Multiplexor

Input:
two 32 bit values (a, b)

one 1bit signal s

Each corresponding bit of
32 bit input values, fed
through 1 bit mux

Output: 1 of the 2 inputs
One 32 bit value

(either a or b)

b31

s

a31

out31

b30

a30

out30

b0

a0

out0

s

B

A
OutMUX

44
Slides by Tia Newhall, CS31, Swarthmore

S (s1s0) Out?

0 (00)

1 (01)

2 (10)

3 (11)

Out

A

s0

B

s1

D

C

What are inputs?

What does it output?

Try for different values
of S (S is 2 bits of input)

45

What does this Circuit do?
S

2

1

1

1

1

1

Slides by Tia Newhall, CS31, Swarthmore

N-Way Multiplexor

Choose one of N inputs

need log2 N select bits

s1 s0 choose

0 0 D0

0 1 D1

1 0 D2

1 1 D3

D0

D3

Out

s0

s1

MUX4
D2
D1

D0

s1

s0

D1

D2

D3

4-Way MUX

S input to
choose D0

S input to
choose D2

S input to
choose D1

S input to
choose D3

46

Example, 1-bit 4-way MUX

Out

A

s0

B

1 bit 4-way MUXs1

D

C
s

Out
1 bit
4-way
MUX

A
B
C
D

S Out

0 A

1 B

2 C

3 D
C

0

1

11 C

0

0

0

When select input is 2 (0b10): C chosen as output

47
Slides by Tia Newhall, CS31, Swarthmore

Simple 3-bit ALU: Add and bitwise OR

Sum0
Sum1
Sum2

3-bit inputs
A and B:

A0

A1
A2

B0

B1

B2

Or0

Or2

Or1

Extra input: control signal to select Sum vs. OR

Multiplexer!
3 bit
ADD

or
OR

result

48

3-bit
adder

B

A

Slides by Tia Newhall, CS31, Swarthmore

Where do Select bits come from?

• Encoded in the bits of the CPU instruction to
execute in IR:

• Instruction encodes information about

• The operation to perform (OP): selects the operation

• Sometimes operands for the operation (ex. val1, val2)

• Sometimes destination for result

49

encodes: OP val1 val2

IR: 10 010 011

e.g.: ADD 2 3

IR: 10010011

compute: 2 + 3

Summary: CPU so far

• Arithmetic and logic circuits: ADD, SUB, NOT, …
• Control circuits: MUX use op bits to select output
• Circuits around ALU:

• Select input values X and Y from instruction or register
• Select op bits from instruction to feed into ALU
• Feed output somewhere

OF

A
L
U

Y

X op Y

op bits: selects which op to output

Output flags: set as a
side effect of op
(e.g., overflow detected)

ADD 2 3

X

bits of CPU
Instruction
(in IR):

50

Summary: Building a CPU

Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

51

Building a CPU: Storage

Goal: Give the CPU a “scratch space” to perform
calculations and keep track of the state its in.

Baby steps:

• Store a 0 or 1

• Retrieve the 0 or 1 value on demand (read)

• Set the 0 or 1 value on demand (write)

52

R-S Latch: Stores Value Q

• To store a value need a circuit with a Cycle

• Value is Stored when R and S are both 1

• Stored value, Q, is stable in this circuit

• External control circuitry ensures R and S are 1

Q (stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

53

1

1

ex. latch stores 0 if a is 0: R =1 --> b is 1, S =1 and b = 1 --> Q is 0
Slides by Tia Newhall, CS31, Swarthmore

Latch Stores value when R and S both 1

Q (stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

1

1

1

0

1

0

(ex) if a is 1: R= 1 --> b is 0, S= 1 and b= 0 --> Q is 1, and a is 1 …

The latch stores 1

54
Slides by Tia Newhall, CS31, Swarthmore

Ex. to write (and store) 0 into Latch
• Set R to 0 momentarily (S stays at 1)

Q
(stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

1

0
1

0

1

0

Q
(stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

1

0
1

1

1

1

Q
(stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

1

0
0

1

0

1

Q
(stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

1

1
0

1

0

1

A. Set R to 0 to store 0 B. Changes lower NAND output to 1

C. Changes upper NAND output to 0 D. R-S Latch Now Stores 0
 (R can be set back to 1 and still stores 0)

55
Slides by Tia Newhall, CS31, Swarthmore

R-S Latch: Stores Value Q
• When R an S are both 1: Store a value

R and S are never both simultaneously 0

• To write a new value:
• Set S to 0 momentarily (R stays at 1): to write a 1
• Set R to 0 momentarily (S stays at 1): to write a 0

if a is 1: R= 1 --> b is 0, S= 1 and b= 0 --> Q is 1: latch stores 1
if a is 0: R =1 --> b is 1, S =1 and b = 1 --> Q is 0: latch stores 0

Q (stored
value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

56

Given the circuit below, can outputs S
and R ever simultaneously both be 0?

A: yes
S

R

D

W
N

A
N

D
N

A
N

D
B: no

C: maybe

57
Slides by Tia Newhall, CS31, Swarthmore

Slides by Tia Newhall, CS31, Swarthmore

Draw the truth table for this circuit

S

R

D

W

N
A

N
D

N
A

N
D

D W S R

 D NAND W ~D NAND W

58

When are R and S 1?

When are either R or S 0?

When is R 0?

When is S 0?

Slides by Tia Newhall, CS31, Swarthmore

Gated D Latch
Controls R-S latch writing, ensures S & R never both 0

Q (value stored)

~Q

S

R

R-S Latch
Data

WE

Data: data value into top NAND, ~Data into bottom NAND
WE: write-enabled, when set, latch is set to value of D

Latches are used for register and SRAM cache memory
 Fast, not very dense, expensive

DRAM, used for RAM, is capacitor-based storage

Regs

Cache

Top of
Memory

Hierarchy

59
Slides by Tia Newhall, CS31, Swarthmore

An N-bit Register
• Fixed-size storage (8-bit, 32-bit, etc.)

• Gated D latch stores one bit

• Connect N of them to the same write-enable wire!

Write
Enable

32-bit

bus
(wires)

32-bit Register

Data in
Bit 0

Bit 1

Bit 31

…

Gated
D Latch

Gated
D Latch

Gated
D Latch

32-bit
Data out

…

WE

Data in
Data out32-bit Register

Abstraction!
60

Slides by Tia Newhall, CS31, Swarthmore

Register “File”

• A set of general-purpose registers for the CPU
to store temporary values.

• Instructions of form:

• “add value in R1 and R2, store result in R3”

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

Register File:

61
Slides by Tia Newhall, CS31, Swarthmore

Register File Interface
For temporary value storage of operands and results:

 ADD Rx Ry Rz

• 2 Outputs: for 2 operands of ALU operation
 Read Register X’s value
 Read Register Y's value
• 1 Data input (+ WE): for writing result to Register Z

• Need to pick two Registers for outputs (Rx and Ry)
• Need to enable exactly one WE to Register (Rz)

“add value in Rx and Ry,
 store result in Rz”

Register File:

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

… 62
Slides by Tia Newhall, CS31, Swarthmore

• Need to pick two Registers for outputs (Rx and Ry)

• Need to enable exactly one WE to Register (Rz)

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

Sr0

Sr1

WE

Data in

Data
 out0

Data
 out1

Sw

Register FileAll registers values are
input to both MUXes

Each MUX chooses one register’s value
for output (input to ALU)

DMUX:
inverse of Multiplexer
1 input, N outputs
+ select input chooses
one of N outputs to
send input

63
Slides by Tia Newhall, CS31, Swarthmore

Summary: Storage Circuits

Register File

N bit (32-bit) Register

1 bit gated D Latch

Basic Logic Gates

Transistors

• Logic Gates hide the details
of transistors (the building
blocks of Logic Gates)

• Build 1 bit gated D latches
from basic logic gates.

• Combine multiple latches to
get one N-bit register.

• Grouping N-bit registers
gives us register file.

Lots of abstraction going on here!

64
Slides by Tia Newhall, CS31, Swarthmore

Summary CPU so far…
We know how to store data (in register file).
We know how to perform arithmetic on it, by feeding it to ALU.
Remaining questions:
 Which register(s) do we use as input to ALU?
 Which operation should the ALU perform?
 To which register should we store the result?

All this info comes
from the program:
a series of instructions.

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

65
Slides by Tia Newhall, CS31, Swarthmore

Summary: Building a CPU

Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

66

Building a CPU: Control

CPU
(Control and
Processing)

Input/Output

Program
and
Data

Memory

We’re building this.
Program (instructions) live here.
We’ll assume for now that we can
access it like an array.

0:

1:

2:

3:

4:

…

N-1:

Mem Addresses

67

Recall the Von Neuman model

Slides by Tia Newhall, CS31, Swarthmore

Recall: executing instructions

1. Fetch instruction from memory

2. Decode what the instruction is telling us to do
• Tell the ALU what it should be doing

• Find the correct operands

3. Execute the instruction (arithmetic, etc.)

4. Store (Write Back) the result

68

Program State
Let’s add two more special registers (not in register file) to keep track of program.

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

69
Slides by Tia Newhall, CS31, Swarthmore

Fetching instructions.
Load IR with the contents of memory at the address stored in the PC.

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction at Address 0

1 Increment PC to
Addr of next instrunction

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

70
Slides by Tia Newhall, CS31, Swarthmore

Decoding instructions.
Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

71
Slides by Tia Newhall, CS31, Swarthmore

Decoding instructions.
Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

OP Code selects
which ALU
operation to
perform.

72
Slides by Tia Newhall, CS31, Swarthmore

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

Decoding instructions.
Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Register ID #’s
specify input
arguments.

73
Slides by Tia Newhall, CS31, Swarthmore

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

Executing instruction.
Let the ALU perform the operation on the selected operands

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do
its thing.
(e.g., Add)

74
Slides by Tia Newhall, CS31, Swarthmore

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

Storing Result
ALU has just computed a result. Where to put ALU output?

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Result location
specifies
where to store
ALU output.

75
Slides by Tia Newhall, CS31, Swarthmore

Discuss: Why do we need a program
counter? Can’t we just start at 0 and
count up one at a time from there?

76

Sr0

Sr1

WE

Data in

…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

Storing Result

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

some

cntrl

circuitry

Interpret the instruction bits: Store result in register, memory, PC.

77
Slides by Tia Newhall, CS31, Swarthmore

Clocking

• Need to periodically transition from one
instruction to the next.

• It takes time to fetch from memory, for signal
to propagate through wires, etc.

• Too fast: don’t fully compute result

• Ripple carry adder: needs to get all the way to the end

• Too slow: waste time

78
Slides by Tia Newhall, CS31, Swarthmore

Clock Driven System
• Everything in is driven by a discrete clock

• clock: an oscillator circuit, generates hi-low pulse

• clock cycle: one hi-low pair

• Clock determines how fast system runs
• Processor can only do one thing per clock cycle

– Usually just one part of executing an instruction

• 1GHz processor:
1 billion cycles/second → 1 cycle every nanosecond (ns)

 (1ns = 10-9 secs)

Clock

1 cycle

1 0 1 0 1 0 1 0 1 0

79
Slides by Tia Newhall, CS31, Swarthmore

Clock and Circuits

Clock Edges Triggers events

• Circuits have continuous values

• Rising Edge: trigger new input values

• Falling Edge: consistent output ready to read

• Between rising and falling edge can have
inconsistent state as new input values flow
through circuit

^ new

 input

^ output

 ready

^ new

 input

Clock:

80
Slides by Tia Newhall, CS31, Swarthmore

Clock cycle Time

• Execution stages: fetch, decode, execute, store

• If one stage per cycle:

longest stage to execute determines cycle time

(ex) if Execute stage is longest, and takes 1 nanosec (10-9 sec),
then need clock cycle of 1 nanosecond (1 GHz clock)

F D E S

Instruction Completion time

81
Slides by Tia Newhall, CS31, Swarthmore

Instruction Execution

F D E S

4 cycles

F D E S

4 cycles

F D E S

4 cycles

Complete 3 instruction in 12 cycles
(or 3 instructions in 12 nanoseconds)

Q: Can we do better?

1 nanosecond

82
Slides by Tia Newhall, CS31, Swarthmore

Analogy

• Laundry

• 4 Steps per load:
Wash first, then Dry, then Fold, then Put Away

• If have 6 loads, what do you do when you take
first load out of the washer?

W

DW

Start Washing the second
Load while first is in Dryer

83
Slides by Tia Newhall, CS31, Swarthmore

Pipelining (CPU)

F

DF

EDF

SEDF

SEDF

1st nanosecond:

2nd nanosecond:

3rd nanosecond:

4th nanosecond:

5th nanosecond:

Steady state: One instruction finishes every nanosecond!

Idea: feed next instruction into previous stage of execution

Implicit Parallel Execution:
Separate instrs simultaneously
executing on a single CPU (each in
different phase of execution)

84
Slides by Tia Newhall, CS31, Swarthmore

Summary: Building a CPU

Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

85

Summary: Architecture & Circuits

Modern Computer based on Von Neumann

• Generic Compute Machine & Stored Program
model

To run program, need different types of circuits:
• ALU: addition, subtraction, multiplexes, and, or, etc

• storage: R-S latches, registers

• control: (ex) fetch next instr from RAM

• abstractions allow us to build more complex functionality
from simpler functionality

Clock-driven system (discrete time)

Pipelining: overlap instruction execution
86

Slides by Tia Newhall, CS31, Swarthmore

	Slide 1: Agenda
	Slide 2: Recall: Building and Running a C program
	Slide 3: Recall: Building and Running a C program
	Slide 4: Von Neumann Architecture (1945)
	Slide 5: Early computers
	Slide 6: Von Neumann Model
	Slide 7: Von Neumann Model
	Slide 8: Von Neumann Model
	Slide 9: Von Neumann Model
	Slide 10: Von Neumann Model: CPU/Memory
	Slide 11: Example: Adding two numbers
	Slide 12: Example: Adding two numbers
	Slide 13: Digital Computers
	Slide 14: Building a CPU (model)
	Slide 15: Logic Gates: Basic Building Blocks
	Slide 16: Review: C Bitwise Operators
	Slide 17: More Logic Gates
	Slide 18: Combinatorial Logic Circuits
	Slide 19: Exercise: Draw the truth table for this circuit
	Slide 20: Exercise: Build a circuit that implements XOR using AND, OR, and NOT
	Slide 21: Exercise: Build a circuit that implements XOR using AND, OR, and NOT
	Slide 22: Exercise: Build a circuit that implements XOR using AND, OR, and NOT
	Slide 23: Abstractions in action
	Slide 24: Arithmetic logic unit (ALU)
	Slide 25: ALU: a 1-bit adder circuit
	Slide 26: Which of these circuits is a one-bit adder?
	Slide 27: More than one bit addition?
	Slide 28: One-bit (full) adder
	Slide 29: One-bit (full) adder
	Slide 30: Multi-bit Adder (Ripple-carry Adder)
	Slide 31: Multi-bit Adder (Ripple-carry Adder)
	Slide 32: Three-bit Adder (Ripple-carry Adder)
	Slide 33: 4-bit adder
	Slide 34: 4-bit adder real life example
	Slide 35: How to Implement Subtraction Circuit?
	Slide 36: How to Implement Subtraction Circuit?
	Slide 37: Simple 3-bit ALU: Add and bitwise OR
	Slide 38: Simple 3-bit ALU: Add and bitwise OR
	Slide 39: Draw the truth tables for this circuit
	Slide 40: Draw the truth tables for this circuit
	Slide 41: Draw the truth tables for this circuit
	Slide 42: Multiplexor: Chooses an input value
	Slide 43: 4-bit 2-way MUX 1-bit 2-way Muxes
	Slide 44: 32 bit 2-Way Multiplexor
	Slide 45: What does this Circuit do?
	Slide 46: N-Way Multiplexor
	Slide 47: Example, 1-bit 4-way MUX
	Slide 48: Simple 3-bit ALU: Add and bitwise OR
	Slide 49: Where do Select bits come from?
	Slide 50: Summary: CPU so far
	Slide 51: Summary: Building a CPU
	Slide 52: Building a CPU: Storage
	Slide 53: R-S Latch: Stores Value Q
	Slide 54: Latch Stores value when R and S both 1
	Slide 55: Ex. to write (and store) 0 into Latch
	Slide 56: R-S Latch: Stores Value Q
	Slide 57: Given the circuit below, can outputs S and R ever simultaneously both be 0?
	Slide 58: Draw the truth table for this circuit
	Slide 59: Gated D Latch
	Slide 60: An N-bit Register
	Slide 61: Register “File”
	Slide 62: Register File Interface
	Slide 63
	Slide 64: Summary: Storage Circuits
	Slide 65: Summary CPU so far…
	Slide 66: Summary: Building a CPU
	Slide 67: Building a CPU: Control
	Slide 68: Recall: executing instructions
	Slide 69: Program State
	Slide 70: Fetching instructions.
	Slide 71: Decoding instructions.
	Slide 72: Decoding instructions.
	Slide 73: Decoding instructions.
	Slide 74: Executing instruction.
	Slide 75: Storing Result
	Slide 76: Discuss: Why do we need a program counter? Can’t we just start at 0 and count up one at a time from there?
	Slide 77: Storing Result
	Slide 78: Clocking
	Slide 79: Clock Driven System
	Slide 80: Clock and Circuits
	Slide 81: Clock cycle Time
	Slide 82: Instruction Execution
	Slide 83: Analogy
	Slide 84: Pipelining (CPU)
	Slide 85: Summary: Building a CPU
	Slide 86: Summary: Architecture & Circuits

