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How a computer runs a program

Von Neuman architecture overview

Building a CPU

Logic gates

Circuits

ALU (Addition, Subtraction, Multiplexor)

Storage (R-S Latches, registers)

Control
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1. Compiling a C program translates it to binary (0’s and 1’s )

• The binary file is an executable, meaning “we can run it”

  

Recall: Building and Running a C program

// example C program

int main() {

   int x = 6 + 7;

   printf(“x %d”, x);

   return 0;

}

01010110101
01010101010
10101010101
01010100

C   program: binary executable program:

gcc 
compiler

2

Operating System (OS)

Computer Hardware 
(HW)

2. With OS’s help, HW circuits   
     runs binary executable
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2. With OS’s help, HW circuits   
     runs binary executable

 

Slides by Tia Newhall, CS31, Swarthmore

Our focus



Von Neumann Architecture (1945)

Computer is a generic computing machine
• Can be used to compute anything that is 

computable

• Based on Alan Turing’s Universal Turing Machine

Uses a stored program model 
• Both program & data loaded into computer memory 

• No distinction between data & instructions in 
memory

All modern computers based 
on the Von Neumann model

4
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Early computers

5

Earlier computers used fixed 
program encoded on machine, 
data loaded and run by fixed 
program 

Left, The difference engine 
(Babbage) could estimate 
polynomial functions useful for 
making tables 



Von Neumann Model 

units connected by buses (wires) to communicate

buses

Memory
Unit Input   

 Units
Output
Units

Processing 
Unit

Control 
Unit      

The CPU

6
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Von Neumann Model 

5 units connected by buses (wires) to communicate

Processing & Control Units:  implement CPU 

 execute program instructions on program data

buses

Memory
Unit Input   

 Units
Output
Units

Processing 
Unit

Control 
Unit      

The CPU

7
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Von Neumann Model 

5 units connected by buses (wires) to communicate

Memory:   stores program instructions and data

memory is addressable:  addr 0, 1, 2, ...

buses

Memory
Unit Input   

 Units
Output
Units

Processing 
Unit

Control 
Unit      

The CPU

8
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Von Neumann Model 

5 units connected by buses (wires) to communicate

Input, Output:  interface to computer

 trigger actions: load program, initiate execution, ...

display/store results: to terminal, save to disk, ...

buses

Memory
Unit Input   

 Units
Output
Units

Processing 
Unit

Control 
Unit      

The CPU

9
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Instruction Execution:  controlled by Control Unit

1. Fetch instruction from Memory (its addr in PC) into IR (and 
increment address in PC to next instruction address)

2. Decode instruction bits to determine operation & operands

3. Execute instruction on ALU

4. Store instruction results to Memory

cntrl bus
addr bus

data bus

Memory
Unit

Processing 
Unit

ALU  registers

Control 
Unit      

PC    IR
The CPU:

Regs

Cache

 Top of Memory
   Hierarchy 
    (on chip)
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Von Neumann Model: CPU/Memory 
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Example: Adding two numbers



Example: Adding two numbers



Digital Computers

• All input & output are discrete and binary

• data, instructions, control signals (0: no voltage, 1: voltage)

• execution is driven by a clock (will discuss later)

• time is discrete: time 1, time 2, time 3, ...

• To run program, need different types of circuits

CPU
ALU, Cntrl, 

Storage

RAM
Cntrl & Storage

bus

Circuits to 
store program 
data and instructions
and support reading 
and writing 
addressable storage 
locations

Circuits to 
execute
program
instructions
that act on 
program data

13
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Building a CPU (model)

Levels of abstraction: start with very simple 
functionality, and add complexity

CPU

ALU, Storage, Control

Complex Circuits

Simple Circuits

Basic Logic Gates

Build up complex
Functionality

Starting with simple
Functionality

14
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Logic Gates: Basic Building Blocks

Input:    Boolean value(s)  (high and low voltages for 1 and 0) 
Output: Boolean value  (0 or 1) result of boolean function
               Always present, but may change when inputs change 
  

   A   B     A & B     A | B      ~A 

   0   0       0         0         1   

   0   1       0         1         1 

   1   0       0         1         0

   1   1       1         1         0

a

b
out

out = a & b

And

a

b
out

out = a | b

Or

a out

out = ~a

Not
C bit-wise
operators:
&: AND

|: OR 

~: NOT

15
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Review: C Bitwise Operators

Bit-wise operators: applied to bits of operand(s)

           & (AND)         | (OR)     ^(XOR)        ~(NOT)

     01010101      01101010      10101010    ~10101111

   & 00100001    | 10111011    ^ 01101001     01010000

     00000001      11111011      11000011

Evaluate Differently than C logical operators

  char x=8, y=7;

  x & y   //  8 bitwise AND 7 is 0

  x && y  //  8 logical AND 7  is a non-zero value (evals to true)

16
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More Logic Gates

a

b out

out = ~ (a | b)

NOR

a

b out

out = ~ (a & b)

NAND

Note the circle on the 
output.
This means “negate it.”

A

B (A | B)
OR

~ ( A | B)

NOTNOR  == 

 A   B   A NAND B    A NOR B  

   0   0      1           1         

   0   1      1           0

   1   0      1           0

   1   1      0           0

17
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Combinatorial Logic Circuits
Idea: Combine logic circuits together to implement 
higher-level functionality

Use this new  functionality as a building block for even 
higher level functionality  (Abstraction!)

Acyclic Network  of Gates

Inputs Outputs

Outputs are boolean functions of inputs

Outputs continuously respond to changes to inputs

18
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Exercise: Draw the truth table for this 
circuit

19

And Or Not

X

Y
Output

X Y Output



Exercise: Build a circuit that implements 
XOR using AND, OR, and NOT

Step 1: Construct the logic table

20



Exercise: Build a circuit that implements 
XOR using AND, OR, and NOT

Step 2: Find an expression for X^Y using binary 
operations

21



Exercise: Build a circuit that implements 
XOR using AND, OR, and NOT

Step 3: Translate the expression to a circuit

22



Abstractions in action

23

XOR out = A^BA

B

Treat XOR Circuit as a  building block for other circuits!



Arithmetic logic unit (ALU)

The ALU performs addition, subtraction, or, add, etc.

• Adder

• Subtractor

• Multiplication / Division (we are not covering these)

• Bit-wise AND, OR, NOT, XOR

• Bit shift operations

• Goal: reuse hardware components whenever 
possible

24



ALU: a 1-bit adder circuit

• 1 bit adder:  A+B

• Two outputs:

1. Obvious one: the sum

2. Other one: ??

A    B     Sum(A+B)  Cout

  0    0                 

  0    1        

  1    0        

  1    1        

25

Cout

1-bit
adder

A

B Sum



Which of these circuits is a one-bit adder?

A

B
Sum

Cout

A

B
Sum

Cout

A

B

Cout

Sum A

B
Sum

Cout

A: B:

C: D:

Nand

Or

NotXor

And

26
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More than one bit addition?

• When adding, sometimes have carry in too

   00011010

  + 00001111

27
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One-bit (full) adder

Need to include:

Carry-in & Carry-out

A    B   Cin     Sum   Cout  

  0    0    0       0      0                   

  0    1    0       1      0  

  1    0    0       1      0     

  1    1    0       0      1

  0    0    1       1      0                   

  0    1    1       0      1  

  1    0    1       0      1     

  1    1    1       1      1   

• When is Sum 1?

• When is Cout 1?

~Cin & (A^B) | Cin & ~(A^B) == (Cin ^(A^B))

(A & B) | ((A^B) & Cin)

28

1-bit
adder

Cin

Cout

A
B Sum
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One-bit (full) adder

Need to include:

Carry-in & Carry-out

A    B   Cin     Sum   Cout  

  0    0    0       0      0                   

  0    1    0       1      0  

  1    0    0       1      0     

  1    1    0       0      1

  0    0    1       1      0                   

  0    1    1       0      1  

  1    0    1       0      1     

  1    1    1       1      1   

= 1-bit
adder

Cin

Cout

A

B Sum

Sum: Cin ^ (A^B)

Cout: (A&B)|((A^B)& Cin)

29
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Multi-bit Adder (Ripple-carry Adder)

1-bit
adder

0 (Cin)

Cout

A0

B0 Sum0

1-bit
adder

Cout

A1

B1 Sum1

1-bit
adder

Cout

A3

B3 Sum3

1-bit
adder

Cout

A2

B2 Sum2

…

1-bit
adder

Cout

AN-1

BN-1 SumN-1

30
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Multi-bit Adder (Ripple-carry Adder)

0 
  (Cin)

1-bit
adder

Cout

A0B0

Sum0

1-bit
adder

Cout

A1B1

Sum1

1-bit
adder

Cout

A2B2

Sum2

1-bit
adder

Cout

An-1Bn-1

Sumn-1

…

0 . . . 0 1 1 A

1 . . . 1 1 0 B

1 . . . 0 0 1 SUM
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Three-bit Adder (Ripple-carry Adder)

010 
+ 011

 

=
3-bit

adder

A0

A1
A2

B0

B1

B2

Carry out

Carry in

Sum0

Sum1

Sum2

1-bit
adder

0

0

1

1-bit
adder

1

1 1-bit
adder

0

0

1

1

0

1

0

0
=101 
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0 0 1 1 A

1 1 1 0 B

0 : Cin

A0

Cout

B0

Sum0

1-bit
adder

1 0 0 1 SUM (A+B)

A1

Cout

B1

Sum1

1-bit
adder

A2

Cout

B2

Sum2

1-bit
adder

A3

Cout

B3

Sum3

1-bit
adder

0  
(Cin)

4-bit
adderCout

AB

Sum

4

11

4

4

Abstraction!

Can treat Multi-bit adder as a unit:
as a building block for larger, more 
complicated functionality.

4-bit
adder
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4-bit adder real life example

34



How to Implement Subtraction Circuit?

Q: what is relationship between Add & Sub?

A – B  ==  A + (-B) 

A – B ==   A + (~B) + 1

35

A0

A1
A2

B0

B1

B2

Carry out

Carry in  (0: Add, 1: Sub)

Sum0

Sum1

Sum2

Bit flipper?

4-bit
Adder/Sub

A3

B3

Sum3
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How to Implement Subtraction Circuit?

Q: what is relationship between Add & Sub?

A – B ==   A + (~B) + 1

36

A0

A1
A2

B0

B1

B2

Carry out

Carry in  (0: Add, 1: Sub)

Sum0

Sum1

Sum2

XOR

4-bit
Adder/Sub

A3

B3

Sum3

C0 C1 C2
C3



Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

At any given time, we 
only want the output 
from ONE of these!

 (either doing an OR 
   op or an ADD op, 
   but not both at
   same time)

37

Out0
Out1
Out2
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Simple 3-bit ALU: Add and bitwise OR
3-bit inputs
A and B:

Extra input: control signal to select Sum vs. OR

Circuit:
takes inputs  Sum and  
OR outputs only one 

of them, based on 
control signal

ex. if cntrl 0 output SUM 
  if cntrl 1 ouput OR

38

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

Or0

Or2

Or1

Out0
Out1
Out2
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Draw the truth tables for this circuit

Control
Signal

Input 1

Input 2

A:

39

And

Or

Not
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Draw the truth tables for this circuit

Control
Signal

Input 1

Input 2

B:

40

And

Or

Not
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Draw the truth tables for this circuit

Control
Signal

Input 1

Input 2

C:

41

And

Or

Not
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Multiplexor: Chooses an input value

Inputs:  2N data inputs, N signal bits

Output: is one of the 2N input values

• Control signal s, chooses the input for output

• When s is 1: choose a, when s is 0: choose b

out
b

s

a out = (s & a)|(~s & b)

1 bit 2-way MUX

42
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Out = (s & A) | (~s & B)

1 0 1 1 A

1 1 0 1 B

A2B2

Out2

A1B1

Out1

A0B0

Out0

A3B3

Out3

1 0 1 1 Out

1 bit
2-way
MUX

1 bit
2-way
MUX

1 bit
2-way
MUX

1 bit
2-way
MUX

s

s

B

A
Out

4 bit
2-way
MUX

1

4

4
4

4-bit 2-way MUX 1-bit 2-way Muxes 

Corresponding bits of A and B fed through a 1-bit MUX

Abstraction!
43
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32 bit  2-Way Multiplexor

Input:
two 32 bit values (a, b)

one 1bit signal s

Each corresponding bit of 
32 bit input values, fed 
through 1 bit mux

Output:  1 of  the 2 inputs 
One 32 bit value

(either a or b) 

b31

s

a31

out31

b30

a30

out30

b0

a0

out0

s

B

A
OutMUX

44
Slides by Tia Newhall, CS31, Swarthmore



S  (s1s0) Out?

0  (00)

1  (01)

2  (10)

3  (11)

Out

A

s0

B

s1

D

C

What are inputs?

What does it output?

Try for different values 
of S (S is 2 bits of input)

45

What does this Circuit do?
S

2

1

1

1

1

1
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N-Way Multiplexor

Choose one of N inputs 

need log2 N select bits

s1  s0    choose

0   0       D0

0   1       D1

1   0       D2

1   1       D3

D0

D3

Out

s0

s1

MUX4
D2
D1

D0

s1

s0

D1

D2

D3

4-Way MUX

S input to 
choose D0

S input to 
choose D2

S input to 
choose D1

S input to 
choose D3

46



Example, 1-bit 4-way MUX

Out

A

s0

B

1 bit 4-way MUXs1

D

C
s

Out
1 bit
4-way
MUX

A
B
C
D

S Out

0 A

1 B

2 C

3 D
C

0

1

11 C

0

0

0

When select input is 2 (0b10): C chosen as output

47
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Simple 3-bit ALU: Add and bitwise OR

Sum0
Sum1
Sum2

3-bit inputs
A and B:

A0

A1
A2

B0

B1

B2

Or0

Or2

Or1

Extra input: control signal to select Sum vs. OR

Multiplexer!
3 bit
ADD

or
OR

result

48

3-bit
adder

B

A
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Where do Select bits come from?

• Encoded in the bits of the CPU instruction to 
execute in IR:

• Instruction encodes information about

• The operation to perform (OP): selects the operation

• Sometimes operands for the operation (ex. val1, val2)

• Sometimes destination for result

49

encodes: OP val1 val2

IR: 10 010  011

e.g.: ADD 2 3

IR: 10010011

compute:  2 + 3



Summary: CPU so far

• Arithmetic and logic circuits: ADD, SUB, NOT, …
• Control circuits: MUX use op bits to select output 
• Circuits around ALU:

• Select input values X and Y from instruction or register
• Select op bits from instruction to feed into ALU
• Feed output somewhere

OF

A
L
U

Y

X op Y

op bits: selects which op to output

Output flags: set as a
side effect of op
(e.g., overflow detected)

ADD 2 3

X

bits of CPU 
Instruction
(in IR):

50



Summary: Building a CPU

Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

51



Building a CPU: Storage

Goal: Give the CPU a “scratch space” to perform 
calculations and keep track of the state its in.

Baby steps:

• Store a 0 or 1

• Retrieve the 0 or 1 value on demand (read)

• Set the 0 or 1 value on demand (write)

52



R-S Latch: Stores Value Q

• To store a value need a circuit with a Cycle

• Value is Stored when R and S are both 1

• Stored value, Q, is stable in this circuit

• External control circuitry ensures R and S are 1

Q  (stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

53

1

1

ex. latch stores 0 if a is 0:   R =1 --> b is 1, S =1 and b = 1 --> Q is 0
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Latch Stores value when R and S both 1

Q  (stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

1

1

1

0

1

0

(ex)   if a is 1:   R= 1 --> b is 0,  S= 1 and b= 0 --> Q is 1, and a is 1 …

The latch stores 1

54
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Ex. to write (and store) 0 into Latch 
• Set R to 0 momentarily (S stays at 1)

Q  
(stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

1

0
1

0

1

0

Q  
(stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

1

0
1

1

1

1

Q  
(stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

1

0
0

1

0

1

Q  
(stored value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

1

1
0

1

0

1

A. Set R to 0 to store 0 B. Changes lower NAND output to 1

C. Changes upper NAND output to 0 D. R-S Latch Now Stores 0
 (R can be set back to 1 and still stores 0)

55
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R-S Latch: Stores Value Q
• When R an S are both 1: Store a value

R and S are never both simultaneously 0

• To write a new value:
• Set S to 0 momentarily (R stays at 1): to write a 1
• Set R to 0 momentarily (S stays at 1): to write a 0

if a is 1:   R= 1 --> b is 0,  S= 1 and b= 0 --> Q is 1:  latch stores 1
if a is 0:   R =1 --> b is 1, S =1 and b = 1 --> Q is 0:  latch stores 0

Q  (stored 
value)

~Q

S

R

R-S Latch

a

b

NAND

NAND

56



Given the circuit below, can outputs S 
and R ever simultaneously both be 0?

A: yes
S

R

D

W
N

A
N

D
N

A
N

D
B: no

C: maybe

57
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Draw the truth table for this circuit

S

R

D

W

N
A

N
D

N
A

N
D

D    W     S        R

          D NAND W  ~D NAND W 

  

58

When are R and S 1?

When are either R or S 0?

When is R 0?

When is S 0?
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Gated D Latch
Controls R-S latch writing, ensures S & R never both 0

Q (value stored)

~Q

S

R

R-S Latch
Data

WE

Data:  data value into top NAND, ~Data into bottom NAND
WE:  write-enabled, when set, latch is set to value of D

Latches are used for register and SRAM cache memory
 Fast, not very dense, expensive

DRAM, used for RAM, is capacitor-based storage

Regs

Cache

 

Top of
Memory

Hierarchy

59
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An N-bit Register 
• Fixed-size storage (8-bit, 32-bit, etc.)

• Gated D latch stores one bit

• Connect N of them to the same write-enable wire!

Write
Enable

32-bit

bus
(wires)

32-bit Register

Data in
Bit 0

Bit 1

Bit 31

…

Gated
D Latch

Gated
D Latch

Gated
D Latch

32-bit
Data out

…

WE

Data in
Data out32-bit Register

Abstraction!
60
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Register “File”

• A set of general-purpose registers for the CPU 
to store temporary values.

• Instructions of form:

• “add value in R1 and R2, store result in R3”

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

Register File:

61
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Register File Interface
For temporary value storage of operands and results:

   ADD Rx Ry Rz

• 2 Outputs:  for 2 operands of ALU operation
 Read Register X’s value
 Read Register Y's value
• 1 Data input (+ WE): for writing result to Register Z

• Need to pick two Registers for outputs (Rx and Ry)
• Need to enable exactly one WE to Register (Rz)

“add value in Rx and Ry, 
  store result in Rz”

Register File:

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

… 62
Slides by Tia Newhall, CS31, Swarthmore



• Need to pick two Registers for outputs (Rx and Ry)

• Need to enable exactly one WE to Register (Rz)

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

Sr0

Sr1

WE

Data in

Data
 out0

Data
 out1

Sw

Register FileAll registers values are
input to both MUXes

Each MUX chooses one register’s value 
for output  (input to ALU)

DMUX:
inverse of Multiplexer
1 input, N outputs
+ select input chooses
one of N outputs to
send input

63
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Summary: Storage Circuits

Register File 

N bit (32-bit) Register

1 bit gated D Latch

Basic Logic Gates

Transistors

• Logic Gates hide the details 
of transistors (the building 
blocks of Logic Gates)

• Build 1 bit gated D latches 
from basic logic gates.

• Combine multiple latches to 
get one N-bit register.

• Grouping N-bit registers 
gives us register file.

Lots of abstraction going on here!

64
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Summary CPU so far…
We know how to store data (in register file).
We know how to perform arithmetic on it, by feeding it to ALU.
Remaining questions:
 Which register(s) do we use as input to ALU?
 Which operation should the ALU perform?
 To which register should we store the result?

All this info comes 
from the  program:
a series of instructions.

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

65
Slides by Tia Newhall, CS31, Swarthmore



Summary: Building a CPU

Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute
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Building a CPU: Control

CPU
(Control and
Processing)

Input/Output

Program
and
Data

Memory

We’re building this.
Program (instructions) live here.  
We’ll assume for now that we can 
access it like an array.

0:

1:

2:

3:

4:

…

N-1:

Mem Addresses 

67
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Recall: executing instructions

1. Fetch instruction from memory

2. Decode what the instruction is telling us to do
• Tell the ALU what it should be doing

• Find the correct operands

3. Execute the instruction (arithmetic, etc.)

4. Store (Write Back) the result
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Program State
Let’s add two more special registers (not in register file) to keep track of program.

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U
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Fetching instructions.
Load IR with the contents of memory at the address stored in the PC.

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction at Address 0

1 Increment  PC to
Addr of next instrunction

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U
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Decoding instructions.
Interpret the instruction bits:  What operation?  Which arguments?

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U
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Decoding instructions.
Interpret the instruction bits:  What operation?  Which arguments?

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

OP Code selects 
which ALU 
operation to 
perform.
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Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

Decoding instructions.
Interpret the instruction bits:  What operation?  Which arguments?

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Register ID #’s 
specify input 
arguments.
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Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

Executing instruction.
Let the ALU perform the operation on the selected operands

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do
its thing.
(e.g., Add)

74
Slides by Tia Newhall, CS31, Swarthmore



Sr0

Sr1

WE

Data in
…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

Storing Result
ALU has just computed a result.  Where to put ALU output?

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Result location 
specifies 
where to store 
ALU output.
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Discuss: Why do we need a program 
counter?  Can’t we just start at 0 and 
count up one at a time from there?
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Sr0

Sr1

WE

Data in

…

MUX

Register File

Data out0

Data out1

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

MUX

D
M

U
X

Sw

A
L
U

Storing Result

Program Counter (PC): Address 1
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

some

cntrl

circuitry

Interpret the instruction bits:  Store result in register, memory, PC.
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Clocking

• Need to periodically transition from one 
instruction to the next.

• It takes time to fetch from memory, for signal 
to propagate through wires, etc.

• Too fast: don’t fully compute result

• Ripple carry adder: needs to get all the way to the end

• Too slow: waste time
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Clock Driven System
• Everything in is driven by a discrete clock

• clock: an oscillator circuit, generates hi-low pulse 

• clock cycle: one hi-low pair

• Clock determines how fast system runs
• Processor can only do one thing per clock cycle

– Usually just one part of executing an instruction

• 1GHz processor:  
1 billion cycles/second → 1 cycle every nanosecond (ns)

                                              (1ns = 10-9 secs)

Clock

1 cycle

1  0 1  0 1  0 1  0 1  0
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Clock and Circuits

Clock Edges Triggers events

• Circuits have continuous values

• Rising Edge: trigger new input values

• Falling Edge: consistent output ready to read

• Between rising and falling edge can have 
inconsistent state as new input values flow 
through circuit

^ new

  input

^ output

   ready

^ new

  input

Clock:
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Clock cycle Time

• Execution stages: fetch, decode, execute, store

• If one stage per cycle:

longest stage to execute determines cycle time

(ex) if Execute stage is longest, and takes 1 nanosec (10-9 sec), 
then need clock cycle of 1 nanosecond (1 GHz clock)

F D E S

Instruction Completion time
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Instruction Execution

F D E S

4 cycles

F D E S

4 cycles

F D E S

4 cycles

Complete 3 instruction in 12 cycles
(or 3 instructions in 12 nanoseconds)

Q:  Can we do better?

1 nanosecond
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Analogy

• Laundry

• 4 Steps per load:  
Wash first, then Dry, then Fold, then Put Away  

• If have 6 loads, what do you do when you take 
first load out of the washer?

W

DW

Start Washing the second 
Load while first is in Dryer
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Pipelining (CPU)

F

DF

EDF

SEDF

SEDF

1st nanosecond:

2nd nanosecond:

3rd nanosecond:

4th nanosecond:

5th nanosecond:

Steady state: One instruction finishes every nanosecond!

Idea: feed next instruction into previous stage of execution

Implicit Parallel Execution:
Separate instrs simultaneously 
executing on a single CPU (each in 
different phase of execution)
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Summary: Building a CPU

Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values

(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute
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Summary: Architecture & Circuits

Modern Computer based on Von Neumann

• Generic Compute Machine & Stored Program 
model

To run program, need different types of circuits:
• ALU: addition, subtraction, multiplexes, and, or, etc

• storage: R-S latches, registers

• control: (ex) fetch next instr from RAM

• abstractions allow us to build more complex functionality 
from simpler functionality

Clock-driven system (discrete time)

Pipelining: overlap instruction execution
86
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