Agenda

How a computer runs a program
Von Neuman architecture overview
Building a CPU
Logic gates
Circuits
ALU (Addition, Subtraction, Multiplexor)
Storage (R-S Latches, registers)
Control



Recall: Building and Running a C program

1. Compiling a C program translates it to binary (0O’'s and 1’s )
* The binary file is an executable, meaning “we can run it”

C program: binary executable program:
// example C program
int main () { 01010110101
int x = 6 + 7; gcgl 01010101010
printf (“x %47, x); comprer 10101010101
return 0; 01010100
} 7 -y
2. With OS’s help, HW circuits :
runs binary executable Operating System (OS)
Computer Hardware
(HW)
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Recall: Building and Running a C program

1. Compiling a C program translates it to binary (0O’'s and 1’s )

* The binary file is an executable, meaning “we can run it”

C program: binary executable program:
// example C program

int main () { 01010110101

' :T]Cciler ) 01010101010

i 10101010101

01010100 7
2. [S :

Operating System (OS)

TUtTiTo VJITTTOUI y CACUULUONTO

Computer Hardware
(HW)
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Von Neumann Architecture (1945)

Computer is a generic computing machine

* Can be used to compute anything that is
computable

* Based on Alan Turing’s Universal Turing Machine
Uses a stored program model

* Both program & data loaded into computer memory

e No distinction between data & instructions in
memory

All modern computers based
on the Von Neumann model
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Early computers

Earlier computers used fixed
program encoded on machine,
data loaded and run by fixed
program

Left, The difference engine
(Babbage) could estimate
polynomial functions useful for
making tables




Von Neumann Model

units connected by buses (wires) to communicate

The CPU
: Memory
Control :
ProLcJensi:mg Err:i'zo Unit Input Output
Units Units
busesI
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Von Neumann Model

5 units connected by buses (wires) to communicate

The CPU
: Memory
Control :
ProLcJensi:mg Err:i'zo Unit Input Output
Units Units
busesI

N\

Processing & Control Units: implement CPU

execute program instructions on program data
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Von Neumann Model

5 units connected by buses (wires) to communicate

The CPU
: Memory
Control -
ProLcJensiilng 8:&0 Unit Input Output
Units Units
busesI

/

Memory: stores program instructions and data
memory is addressable: addrO, 1, 2, ...

Slides by Tia Newhall, CS31, Swarthmore



Von Neumann Model

5 units connected by buses (wires) to communicate

The CPU
: Memory
Control ,
Profjisiimg f;]iio Unit Input Output
Units Units
buses|

/

Input, Output: interface to computer
trigger actions: load program, initiate execution, ...
display/store results: to terminal, save to disk, ...

Slides by Tia Newhall, CS31, Swarthmore



Von Neumann Model: CPU/Memory

Processing Control Memory
The CPU: Unit Unit Unit
ALU registers PC IR Regs
Cache
addr bus | |
cntrl bus | Top.ofMemory

data bus Hierarchy
(on chip)

Instruction Execution: controlled by Control Unit

1. Fetch instruction from Memory (its addr in PC) into IR (and
increment address in PC to next instruction address)

Decode instruction bits to determine operation & operands
Execute instruction on ALU
Store instruction results to Memory
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Example: Adding two numbers

The CPU

Processing Unit

registers ALU

iy

Control Unit

PC: 1234

IR: 101011...

addr bus

1234

>
cntrl bus READ
data bus 101011...
<€

Memory Unit

addr:

1234:

data

101011...

1. Fetch: Read instruction bits from mermory at address in PC (1234), and store in IR

The CPU

Processing Unit

registers  ALU

Control Unit

PC: 1238

2 1

I
IR: 101011...

addr bus

cntrl bus

data bus

Memory Unit

addr:

1234:

data

101011...

2. Decode: instruction bits in IR encode which registers store operands & the ALU operation




Example: Adding two numbers

The CPU Memory Unit
Processing Unit Control Unit addr: data
addr bus
registers ALU PC: 1238 el b 1234:| 101011...
cntri bus

3
7
4 El— IR: 101011.. data bus

3. Execute: ALU performs instruction operation (+) on operands (3,4) to compute result (7)

The CPU Memory Unit
Processing Unit Control Unit addr: data
addrbus 5678 >
registers ALU PC: 1238 el b WRITE 1234:| 101011...
cntrl bus
7

4. Store: the control unit stores the ALU result (7, binary 00000111) to memory



Digital Computers

* All input & output are discrete and binary

e data, instructions, control signals (0: no voltage, 1: voltage)

e execution is driven by a clock (will discuss later)

* time is discrete: time 1, time 2, time 3, ...

* To run program, need different types of circuits

Circuits to
execute
program
instructions

CPU
ALU, Cntrl,
Storage

that act on
program data

bus

RAM
Cntrl & Storage

Slides by Tia Newhall, CS31, Swarthmore

Circuits to

store program

data and instructions
and support reading
and writing
addressable storage
locations

13



Building a CPU (model)

Levels of abstraction: start with very simple
functionality, and add complexity

CPU A Build up complex
Functionality

ALU, Storage, Control

Complex Circuits

Simple Circuits Starting with simple

Basic Logic Gates Functionality
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Logic Gates: Basic Building Blocks

Input: Boolean value(s) (high and low voltages for 1 and 0)
Output: Boolean value (0 or 1) result of boolean function
Always present, but may change when inputs change

C bit-wise

And Or Not
operators: a— a
. out out a out
T L Do 5] Do D

~: NOT out=as&hb out=a|b out = ~a
A B A & B A | B ~A

_____ c o { o o0 | 1

L R U I S S 1 ]

_____ N SU ISR S IS SR
1 1 1 1 0

15
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Review: C Bitwise Operators

Bit-wise operators: applied to bits of operand(s)

& (AND) | (OR) A(XOR) ~(NOT)
01010101 01101010 10101010  ~10101111
& 00100001 | 10111011 A 01101001 01010000
00000001 11111011 11000011

Evaluate Differently than C logical operators

char x=8, vy=7;
X &V // 8 bitwise AND 7 is O
x && vy [/ 8logical AND 7 is a non-zero value (evals to true)

16
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More Logic Gates

Note the circle on the
output.

This means “negate it.”

a ] a /
b @out b out
out=~(a&Db) out=~(a | b)
A
NOR == "—
B (AIB) b ~(A|B)
A B A NAND B A NOR B
0 0 1 1
0 1 1 0
1 0 1 0
1 1 0 0

Slides by Tia Newhall, CS31, Swarthmore
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Combinatorial Logic Circuits

ldea: Combine logic circuits together to implement
higher-level functionality

Acyclic Network of Gates
1 -

1 >
o

Inputs Outputs

L]
:

T

1

Outputs are boolean functions of inputs
Outputs continuously respond to changes to inputs

Use this new functionality as a building block for even
higher level functionality (Abstraction!)

Slides by Tia Newhall, CS31, Swarthmore
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Exercise: Draw the truth table for this
circuit

And Or Not
1 ) > >
X Ij—
I |
y _Z>— Output

x v loupu
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Exercise: Build a circuit that implements
XOR using AND, OR, and NOT

Step 1: Construct the logic table

20



Exercise: Build a circuit that implements
XOR using AND, OR, and NOT

Step 2: Find an expression for XY using binary
operations

21



Exercise: Build a circuit that implements
XOR using AND, OR, and NOT

Step 3: Translate the expression to a circuit

22



Abstractions in action

Treat XOR Circuit as a building block for other circuits!

A — out = A*B
- XOR -

Pin configuration (top view)
NS
1a] 1 14y
1B| 2 @ 13|4B
1¥] 3 :@12 4A
2¥| 4 14y
2A} 5 @ 10]3Y
2B} 6 }— @ g |3B
Gup| 7 8 |3A

23



Arithmetic logic unit (ALU)

The ALU performs addition, subtraction, or, add, etc.

 Adder

e Subtractor

* Multiplication / Division (we are not covering these)
* Bit-wise AND, OR, NOT, XOR

* Bit shift operations

* Goal: reuse hardware components whenever
possible

24



ALU: a 1-bit adder circuit
1 bit adder: A+B

A ——
1-bit
* Two outputs: B i >um
1. Obvious one: the sum |

2. Other one: ??

Sum (A+B) Cout

R O O |
~ O r O |W



Which of these circuits is a one-bit adder?
“JAnd)-
o>

Trongo

A: B:
g“:D— Sum A_:) Sum

B
DO— Cout ) Cout

C: D:
AT D AT D s

Slides by Tia Newhall, CS31, Swarthmore
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More than one bit addition?

* When adding, sometimes have carry in too

00011010
+ 00001111

Slides by Tia Newhall, CS31, Swarthmore
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One-bit (full) adder

. A B Cin Sum Cout
Need to include: ; ; ; ; ;
Carry-in & Carry-out 0 1 0 1 0
C. 1 0 0 1 0
¥ 1 1 0 0 1
A — :
1-b
B addcletr > Sum ’ ’ : ' °
0 1 1 0 1
v 1 0 1 0 1
COUt
1 1 1 1 1
e WhenisSum1?
~C.. & (A"™B) | C,. & ~(A"B) == (C,, ~(A"B))
* WhenisC,,1?
(A & B) | ((A"B) & C.,)

Slides by Tia Newhall, CS31, Swarthmore
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One-bit (full) adder

Need to include:

Carry-in & Carry-out

Sum:
C

out °

C. A

in

(A"B)

(A&B) | ((A”B) & C,.)

b

o>

j_

Slides by Tia N

Y
|/

lhal—fc234—C 41
CWITAIT, C35 L, SWdartrnmorec

A B Cin Sum Cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1
S Cin
" |
A it
G | -DI I
G B adder Sum
Cout
C
out 29



Multi-bit Adder (Ripple-carry Adder)

i(cin)
A
BO bt |
0 adder 0
Cl
A
Bl o oLbit |
1 adder 1
Cl
A
Bz _ bt |
2 adder 2

C

out

Slides by Tia Newhall, CS31, Swarthmore

v

A

B3 bt

3 adder 3

Cl
o000

A
BN'l o Lbit |
N-1 adder N-1

Coutl

30



Multi-bit Adder (Ripple-carry Adder)

0 . .. 0 1 1
1 . .. 1 1 0 B
Bn—l An—l BZ A2 Bl Al BO A0
C . C . C . C i

out 1-bit ey .. out 1-bit out 1-bit out 1-bit e 0

adder adder adder adder
(Cin)

Sum_ 4 Sum, Sum;, Sum,
1 . . . 0 0 1 SUM

Slides by Tia Newhall, CS31, Swarthmore



Three-bit Adder (Ripple-carry Adder)

0
0 _ —— ,
1-bit | . — Carry in
l— adder l
0 —
l 0 Ag =
010 -
1-bit |, 3.bit —=Sum,
+ 011 adder adder [ UM
By — —Sum,
ll B, —
1 B, =
1 1-bit | 1
adder
0
_ 101 Carry out
o =
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B
adder
""""" B[ As| By A B A B A
Sou 1-bit |Cout | 1-bit |Cou | 1-bit |Cout | 1-bit | 0 c
adder adder adder adder | in
Sum, Sum, Sum, Sum,
1 0 0 1 SUM (A+B)
B A
Lt Abstraction!
c ¥ a‘;g:r <%0 Can treat Multi-bit adder as a unit:
(Cin) as a building block for larger, more
%4 complicated functionality.
Sum
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4-bit adder real life example

logic diagram (positive logic)

(TOP VIEW)
20 Uss vVee
B2[]2 s{1B3
A2z 1a[]A3
s1[Ja 13[]=3
A1ds 12[0A4
B1[Js 11[]B4
co]> 1o[]z4

GND[Js oll]C4

84(11)

Ad (12)

83(15)

14
A3( :

82 (2)

A2 (3)

(6)

(5)
(7)

B1

Al
Cco

Y

(9)

Ca

(10)

z4

L

"

(13)
3

(1)
2

(4)

1

34



How to Implement Subtraction Circuit?

Q: what is relationship between Add & Sub?

A —B == A + ('B) Carry in (0: Add, 1: Sub)
A—-B== A+("B)+1 l
AO
Al
A —Sum,
A3
4-bit ——Sum,
By — Adder/Sub ——Sum,
B, —— _—
! Bit flipper? Sum;
B, ——
By, ——
v
Carry out

35
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How to Implement Subtraction Circuit?

Q: what is relationship between Add & Sub?

A — B == A + (NB) +1 Carry in (0: Add, 1: Sub)
i
AO
Al
AZ
—Sum
Co Ci| G C3 A; °
v vV Vv ¥ 4-bit  —Sum,
By — Adder/Sub ——Sum,
B, = I
1 XOR Sum,
BZ
BB
v
Carry out

36



Simple 3-bit ALU: Add and bitwise OR

3-bit inputs
A and B:
A, ®
A -
A; @ 3-bit — Sum,
adder [~ Sum;
Sum,
EO ,\G At any given time, we
Bz A only want the output
from ONE of these! _|— 83&
) Oro = Out,
(either doing an OR
D ory op or an ADD op,
but not both at
D or same time)
37
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3-bit inputs

Simple 3-bit ALU: Add and bitwise OR

A and B:

Extra input: control signal to select Sum vs. OR

®

®©

3-bit
adder

®

Or,

Sum,
Sum;
Sum,
v
: Circuit:
ircui

takes inputs Sum and

OR outputs only one

of them, based on

control signal

Or,

Or,

ex. if cntrl 0 output SUM
if cntrl 1 ouput OR

Slides by Tia Newhall, CS31, Swarthmore

Out,
Out,
Out,
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Draw the truth tables for this circuit

Input 1

Control
Signal

Input 2

oD

And D—

Not —‘><>'
39
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Draw the truth tables for this circuit

Input 1

Control
Signal

Input 2

oD

And D—

Not —‘><>'
40
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Draw the truth tables for this circuit

Input 1

Control
Signal

Input 2

C:

Do

O~
:}/'

And D—

Not —‘><>'
41
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Multiplexor: Chooses an input value

Inputs: 2N data inputs, N signal bits

Output: is one of the 2N input values

S

V 1 bit 2-way MUX

=

____ out

out = (s & a)| (~s & b)

e Control signal s, chooses the input for output

* When sis 1: choose a, when s is 0: choose b

Slides by Tia Newhall, CS31, Swarthmore
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4-bit 2-way MUX 1-bit 2-way Muxes

Corresponding bits of A and B fed through a 1-bit MUX

1 0 1 1 A
1 1 0 1
| ——— — 1 ——— -—
B3 A3 BZ A2 Bl Al B0 A0
1 bit 1 bit 1 bit
2-way 2-way 2-way
MUX MUX MUX
Out, Out, Out,
0 1 1 Out

Out=(s &A) | (~s & B)

Abstraction!

43
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32 bit 2-Way Multiplexor

by

Ch)

Slides by Tia Newhall, CS31, Swarthmore

Y

-

B —
MUX Out
A —
Input:
out, two 32 bit values (a, b)

one 1bit signal s

outy, Each corresponding bit of
32 bit input values, fed
through 1 bit mux

Output: 1 of the 2 inputs
One 32 bit value
out, (either a or b)

44



What does this Circuit do?

2
ISO What are inputs?

\/ What does it output?

Try for different values
of S (S is 2 bits of input)

slojue

B \ L S (s4Sp) Out?
Out 0 (00)
1 (01)
2 (10)
D \1 3 (11)

45
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N-Way Multiplexor

sl

Choose one of N inputs < 4-Way MUX

P—
Sinputto

need log, N select bits 8 Y choose b0
| NS
W

Sinputto

0 choose

D O T choose D1

S

0

1 D1 Ly

0 D2 bl 4>_|_
1 D3 % hoose 2

DO l_

D1 MuUx4 = Out
D2 — D3

D3

H = O O
—e

—T,

3 TP, E D2

Sinputto
choose D3

ol




Example, 1-bit 4-way MUX

When select input is 2 (Ob10): C chosen as output

S @
s, L o 1 bit 4-way MUX S Out
ARy L |
A 2 C
! - 3 D
B I C
1
3 I} 1 C Out S trrerreerseenens
A —— 1 pit
:)O_ B — 4-way Out
D g: MUX

Slides by Tia Newhall, CS31, Swarthmore
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Simple 3-bit ALU: Add and bitwise OR

3-bit inputs Extra input: control signal to select Sum vs. OR
A and B:
AO A
T
A A -
e o 3-bit Sumy,
adder guml
um,
By

oo
o | O
SR =
‘D‘L

. D)

Multiplexer!

Slides by Tia Newhall, CS31, Swarthmore

3 bit
ADD
or
OR
result
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Where do Select bits come from?

e Encoded in the bits of the CPU instruction to

execute in IR:

IR:

10010011

* Instruction encodes information about

* The operation to perform (OP): selects the operation

 Sometimes operands for the operation (ex. vall, val2)

e Sometimes destination for result

IR:
encodes:

e.g.:

10

010

011

OP

vall

val2

ADD

2

3

compute: 2+ 3

49



Summary: CPU so far

bits of CPU
Instruction |
(in IR): ADD | 2 3 op bits: selects which op to output
Y \
N
lL_J — X OD Y
X

/ -------- OF Qutput flags: set as a

side effect of op
(e.g., overflow detected)

* Arithmetic and logic circuits: ADD, SUB, NOT, ...

* Control circuits: MUX use op bits to select output
e Circuits around ALU:

e Select input values X and Y from instruction or register
* Select op bits from instruction to feed into ALU

* Feed output somewhere 50



Summary: Building a CPU

Three main classifications of HW circuits:

2. Storage: to store binary values
(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

51



Building a CPU: Storage

Goal: Give the CPU a “scratch space” to perform
calculations and keep track of the state its in.

Baby steps:
» StoreaOorl
e Retrieve the O or 1 value on demand (read)
e Set the 0 or 1 value on demand (write)

52



R-S Latch: Stores Value Q

* To store a value need a circuit with a Cycle
* Value is Stored when Rand S are both 1

e Stored value, Q, is stable in this circuit

e External control circuitry ensures Rand S are 1

R-S Latch

g 1
b | NAND Jo- Q (stored value)

d
R_1 NAND ~Q

ex. latch stores0ifais0: R=1-->bis1,S=1andb=1-->Qis0

Slides by Tia Newhall, CS31, Swarthmore
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Latch Stores value when R and S both 1

(ex) ifaisl: R=1-->bis0, S=landb=0-->Qis1,andais1..

R-S Latch
s 1 1
o b ReND Q (stored value)
1><
> 0
R 1 a | NAND ~Q

The latch stores 1

54
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Ex. to write (and store) O into Latch

* Set R to 0 momentarily (S stays at 1)

R-S Latch R-S Latch

1 1
ST >: 1 ST >: 1
. b NAND Q ) b NAND Q

(stored value) (stored value)

1 1
0 @ |NAND b2 ~Q 0 @ |nanp p— ~Q
R—] R—
A. Set R to O to store 0 B. Changes lower NAND output to 1
R-S Latch R-S Latch
1 ) 0 L > 0
ST ST
b NAND Q b NAND Q
1 (stored value) 1 (stored value)
0 0
0 4 | NAND L ~Q 1 3 | NAND L ~Q
R— R |
C. Changes upper NAND output to 0 D. R-S Latch Now Stores 0

(R can be set back to 1 and still stores 0)
55
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R-S Latch: Stores Value Q

e When R an S are both 1: Store a value

R and S are never both simultaneously 0

R-S Latch
S
b | NAND Jo- Q (stored
value)
R d | NAND p ~Q

ifaisl: R=1-->bis0, S=1andb=0-->Qis 1: latch stores 1
ifaisO: R=1-->bis1,S=1andb=1-->Qis0: latch stores O

* To write a new value:
e Set S to O momentarily (R stays at 1): to writea 1
* Set R to 0 momentarily (S stays at 1): to writea 0

56



Given the circuit below, can outputs S
and R ever simultaneously both be 07?

D 4 )
E)O > A: yes
W : B: no
[ E}@ i C: maybe

Slides by Tia Newhall, CS31, Swarthmore
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Draw the truth table for this circuit

NAND NAND
m m

Lo

Slides by Tia Newhall, CS31, Swarthmore

D NAND W

R
~D NAND W

When areRand S 17

When are either R or S 0?

When is R 0?

When is S 0?
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Gated D Latch

Controls R-S latch writing, ensures S & R never both 0
R-S Latch

Data ¢

} - Q (value stored)
WE ®
D=

Data: data value into top NAND, ~Data into bottom NAND
WE: write-enabled, when set, latch is set to value of D

Top of

Memory
Hierarchy
Regs

Latches are used for register and SRAM cache memory P

Fast, not very dense, expensive

DRAM, used for RAM, is capacitor-based storage

Slides by Tia Newhall, CS31, Swarthmore
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An N-bit Register
* Fixed-size storage (8-bit, 32-bit, etc.)
* Gated D latch stores one bit
* Connect N of them to the same write-enable wire!

32-bit Register
32-bit

. Bit 0
Data in Gated
:: D Latch[™ |
} Bit 1 | -bi
Write t Gated | | 32-bit
ii | Duliatcb— . Data out
Enable ! i
Bit 31
Gated
D Latch[~
Data in m— 32-bit Register P Data out :
WE Abstraction!

Slides by Tia Newhall, CS31, Swarthmore
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Register “File”

* A set of general-purpose registers for the CPU
to store temporary values.

Register File:
Data in me
V\;E 32-bit Register #0
Data in meses . .
32-bit Register #1 =
WE =
Data in : .
WE 32-bit Register #2 e
Data in s . .
WE 32-bit Register #3 F

* Instructions of form:
e “add value in R1 and R2, store result in R3”

Slides by Tia Newhall, CS31, Swarthmore



Register File Interface

For temporary value storage of operands and results:

ADD Rx Ry Rz “add value in Rx and Ry,
store result in Rz”

e 2 Outputs: for 2 operands of ALU operation
Read Register X’s value
Read Register Y's value
e 1 Data input (+ WE): for writing result to Register Z

 Need to pick two Registers for outputs (Rx and Ry)

* Need to enable exactly one WE to Register (Rz)
Register File:

Data\/i\r;E : 32-bit Register #0 b
Data\/i\?E T 32-bit Register #1 ‘—
Data\/i\?E "~ 1 32-bit Register #2 b
Data\/i\?E L 32-bit Register #3 b

Slides by Tia Newhall, CS31, Swarthmore
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* Need to pick two Registers for outputs (Rx and Ry)

* Need to enable exactly one WE to Register (Rz)

] (o
SW ......... g Srl """"" "5
Register File '
H
~1  32-bit Register #0
Data out,
WE é | 32-bit Register #1
2
™  32-bit Register #2 I
MUX Data out,
~  32-bit Register #3 [
Datain Sw
WE —
All registers values are Data in

Slides by Tia Newhall, CS31, Swarthmore

input to both MUXes

Each MUX chooses one register’s value
for output (input to ALU)

DMUX:

inverse of Multiplexer
1 input, N outputs

+ select input chooses
one of N outputs to

send input
Sro ........
....... St
Data
out,

Register File |ptq

out,

63



Summary: Storage Circuits

Lots of abstraction going on here!

* Logic Gates hide the details
of transistors (the building
blocks of Logic Gates)

e Build 1 bit gated D latches
from basic logic gates.

* Combine multiple latches to
get one N-bit register.

* Grouping N-bit registers
gives us register file.

Slides by Tia Newhall, CS31, Swarthmore

Register File

N bit (32-bit) Register

1 bit gated D Latch

Basic Logic Gates

Transistors

64



Summary CPU so far...

We know how to store data (in register file).
We know how to perform arithmetic on it, by feeding it to ALU.
Remaining questions:

Which register(s) do we use as input to ALU?

Which operation should the ALU perform?

To which register should we store the result?

: All this info comes
Register File from the program:

a series of instructions.

~1  32-bit Register #0 Data out,

< | |- : : A

WE ) 32-bit Register #1 L

2 U

™  32-bit Register #2 | Data out,
MUX
1  32-bit Register #3 [
. N
Datain

65
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Summary: Building a CPU

Three main classifications of HW circuits:

3. Control: support/coordinate instruction execution

(ex) fetch the next instruction to execute

66



Building a CPU: Control

Program (instructions) live here.
We're building this. We’'ll assume for now that we can
access it like an array.

Mem Addresses

CPU 0:
(Control and <‘;,> Program 1:
Processing) and .

Data 2:

@ Memory 3:

Input/Output 4:
N-1:

Recall the Von Neuman model
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Recall: executing instructions

1. Fetch instruction from memory

2. Decode what the instruction is telling us to do
* Tell the ALU what it should be doing
* Find the correct operands

3. Execute the instruction (arithmetic, etc.)

4. Store (Write Back) the result
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Program State

Let’s add two more special registers (not in register file) to keep track of program.

Program Counter (PC):

Instruction Register (IR):

Memory address of next instr

Instruction contents (bits)

Sro ...................
SW e Sr1 ......... .
Register File
H
~|  32-bit Register #0 Data out,
P - . .
WE S 32-bit Register #1
=
()] . .
- 32-bit Register #2 = Data out,
MUX
1  32-bit Register #3 [
. ~—
Data in

Slides by Tia Newhall, CS31, Swarthmore

(Memory)

P w N RO

N-1:
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Fetching instructions.

Load IR with the contents of memory at the address stored in the PC.

Program Counter (PC):

Instruction Register (IR):

WE

Data in

Address 1

Instruction at Address O

Register File

32-bit Register #0

Increment PC to
Addr of next instrunction

DMUX

32-bit Register #1

32-bit Register #2

32-bit Register #3

Slides by Tia Newhall, CS31, Swarthmore

Data out,
A
L
i U
Data out;
MUX

(Memory)

N-1:
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Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

(Memory)
Program Counter (PC): Address 1 N
1:
Instruction Register (IR): | OP Code | Reg A | Reg B | Result 2:
3:
4.
SI’O .................. )
SW  eeieens Sr1 ......... . N-1:
Register File
~|  32-bit Register #0 Data out,
P = . . A
WE ) 32-bit Register #1 L
3
™ 32-bit Register #2 | Data out, g
MUX
|  32-bit Register #3
Data in

/1
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Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC):

Instruction Register (IR):

Address 1

OP Code | Reg A | Reg B | Result

Sr-o ...................
SW  ceeeeens S.r1 .........
Register File
H
32-bit Register #0 Data out,
= 32-bit Register #1
WE ) it Register
=
) . .
32-bit Register #2 Data out,
MUX
32-bit Register #3
. —
Data in

Slides by Tia Newhall, CS31, Swarthmore

(Memory)

P W DHMRO

N-1:

OP Code selects
which ALU
operation to
perform.
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Decoding instructions.

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 1

Instruction Register (IR): | OP Code | Reg A | Reg B | Result

Register ID #’s
specify input
arguments.

Sr-o....
SW  ceeeeens S.r1 .........
Register File
fﬁ:
~|  32-bit Register #0  [* Data out,
MUX
X | ] 32-bitRegister#1 |1 l
WE ) it Register
=
() . .
~|  32-bit Register #2 | Data out,
MUX
|  32-bit Register #3
. ~—
Data in

Slides by Tia Newhall, CS31, Swarthmore

N-1:

(Memory)

P W DHMRO
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Executing instruction.

Let the ALU perform the operation on the selected operands

Program Counter (PC):

Instruction Register (IR):

Address 1

(Memory)

OP Code | Reg A | Reg B | Result

P W DHMRO

Sr,
SW e Sl’l N-1:
Register File
) Let the ALU do

32-bit Register #0 | Data out, its thing.

g A MUX (e.g., Add)

WE ) 32-bit Register #1 7 l

=

) . .
32-bit Register #2 Data out,

MUX
32-bit Register #3
Data in —

Slides by Tia Newhall, CS31, Swarthmore
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Storing Result

ALU has just computed a result. Where to put ALU output?

(Memory)
Program Counter (PC): Address 1 N
1:
Instruction Register (IR): | OP Code | Reg A | Reg B | Result 2:
3:
4:
Sr,
SW e Srl N-1:
Register File
—| 32-bit Register#0 [ Data out,
MUX
< | |- : : i A
WE ) 32-bit Register #1 L v
g ->
=  32-bit Register#2 Data out, Result location
MUX specifies
—|  32-bit Register #3 j where to store
Data in ALU output.

75
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Discuss: Why do we need a program
counter? Can’t we just start at O and
count up one at a time from there?
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Storing Result

Interpret the instruction bits: Store result in register, memory, PC.

(Memory)
Program Counter (PC): Address 1 |4 o
1
Instruction Register (IR): | OP Code | Reg A | Reg B | Result 2:
3:
4.
Sr,
SW ......... Sl’l N-1:
Register File
]  32-bit Register #0 [ Data out,
el MUX
WE b - . ! A
> ) 32-bit Register #1 7 L some
= cntrl
- =  32-bit Register #2 [ Data out, U cireuitry
MUX
. —| 32-bit Register#3
Data in ____

77
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Clocking

* Need to periodically transition from one
instruction to the next.

* |t takes time to fetch from memory, for signal
to propagate through wires, etc.
e Too fast: don’t fully compute result
* Ripple carry adder: needs to get all the way to the end
* Too slow: waste time

78
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Clock Driven System

* Everything in is driven by a discrete clock
* clock: an oscillator circuit, generates hi-low pulse

e clock cycle: one hi-low pair
1010 1 0 1 0 1 0

Clock | | | | | I_

1 cycle

* Clock determines how fast system runs

* Processor can only do one thing per clock cycle
— Usually just one part of executing an instruction
* 1GHz processor:
1 billion cycles/second = 1 cycle every nanosecond (ns)
(1ns =107 secs)

79
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Clock and Circuits

Clock Edges Triggers events

 Circuits have continuous values
* Rising Edge: trigger new input values
e Falling Edge: consistent output ready to read

* Between rising and falling edge can have
inconsistent state as new input values flow
through circuit

Clock:

A

new ~ output ~ new
input ready input

80
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Clock cycle Time

* Execution stages: fetch, decode, execute, store

——

Instruction Completion time

>

* |f one stage per cycle:
longest stage to execute determines cycle time

(ex) if Execute stage is longest, and takes 1 nanosec (10 sec),
then need clock cycle of 1 nanosecond (1 GHz clock)

81
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1 nanosecond Instruction Execution
A

4 cycles

v

4 cycles

Complete 3 instruction in 12 cycles M

(or 3 instructions in 12 nanoseconds) >
4 cycles

Q: Can we do better?

82
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Analogy

* Laundry

e 4 Steps per load:
Wash first, then Dry, then Fold, then Put Away

* If have 6 loads, what do you do when you take
first load out of the washer?

E Start Washing the second

Load while first is in Dryer

83
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Pipelining (CPU)

ldea: feed next instruction into previous stage of execution

15t nanosecond: g Implicit Parallel Execution:

Separate instrs simultaneously
i ~ executing on a single CPU (each in
3"d nanosecond: h

different phase of execution)
4t nanosecond: ;

5th nanosecond: G g

Steady state: One instruction finishes every nanosecond!

2hd nanosecond:

84
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Summary: Building a CPU

Three main classifications of HW circuits:
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Summary: Architecture & Circuits

Modern Computer based on Von Neumann

* Generic Compute Machine & Stored Program
model

To run program, need different types of circuits:

* ALU: addition, subtraction, multiplexes, and, or, etc
» storage: R-S latches, registers
e control: (ex) fetch next instr from RAM

e abstractions allow us to build more complex functionality
from simpler functionality

Clock-driven system (discrete time)

Pipelining: overlap instruction execution

Slides by Tia Newhall, CS31, Swarthmore
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