Agenda

Simulating gates, circuits, and storage
HDL to C/C++
C/C++ review

Lab — Working with an integrated circuits (IC)
Getting started with breadboards

Simulating gates and other hardware

ldea: Simulate hardware designs before building them
* Design the chip architecture
* Encode the design with HDL
* Simulate the chip and optimize the design
* Manufacture the physical chip

HDL - Hardware Description Language
VHDL - Virtual Hardware Description Language

HDL Demo: XOR Gate

I a |
a —+—o + |
| . | And |~ I
| ~ :
| " INot out ,./ aAndNotb |
I \ ngtb \ |
I \ / \ a |
: f‘ﬁ\] » out | out
/o
I Not nota / I
in out \ / I
| \ notgAndb |
l (N L |
ou |
| » (A28 |
b 1 G I
I |
- .
/*% out = (a And Not(b)) Or (Not(a) And b)) */ /** Chips set (APIs): */
p
CHIP Xor { .
IN a, b; - Not (in=, out=);
OUT out;
m And (a=, b=, out=);
PARTS:
Or a=, b=, out=);
Not (in=a, out=nota); ()
Not (in=b, out=notb); Xor (a=, b=, out=);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);

Or (a=aAndNotb, b=notaAndb, out=out); .
} From nand2tetris.org

C Demo: HDLto C

CHIP Xor{
IN a, b;
OUT out;

PARTS:

Not(in=a, out=nota);
Not(in=b, out=notb);
And(a=a, b=notb, out=w1);
And(a=nota, b=b, out=w2);
Or(a=w1, b=w2, out=out);

void Xor(uchar a, uchar b, uchar* out)
{
uchar nota, notb, w1, w2;
Not(a, ¬a);
Not(b, ¬b);
And(a, notb, &w1);
And(nota, b, &w2);
Or(w1, w2, out);

Goal: Build all gates from Nand

Write code to test inputs/outputs

Review: Pass by value vs Pass by Pointer

typedef unsigned char uchar;

void Xor(uchar a, uchar b, uchar* out)
{
uchar nota, notb, w1, w2;
Not(a, ¬a);
Not(b, ¬b);
And(a, notb, &w1);
And(nota, b, &w2);
Or(w1, w2, out);

}

int main()

{
ucharx,y, result;
Xor(x, y, &result);
return O;

}

Hardware simulator design (part 1)

Use functions to simulate chips with no persistent state

Elementary 16-bit Multi-way

logic gates variants variants

a Not a Notl6 a Or8Way

a And a Andl6 a Mux4Wayl6

o Or a 0ril6 a Mux8Way16

a Xor a Mux16 o DMux4Way
) Mux a DMux8Way

- DMux

Operations

* HalfAdder
* FullAdder
* Addil6
* Incl6

« ALU

Simulating memory

1-bit register

1-bit register in if load(r):
Stores one bit out (7 +1) =1in(7)
else

over time
out(z+ 1) =out(r)

Simulating a 1-bit DFF in C++

// register.h
namespace hack

{
class Bit // one-bit data flip-flop

{
public:
Bit();
void tick();
ucharin;
uchar load;
uchar out;

// register .c
namespace hack
{
Bit::Bit() : load(0), out(0), in(0) {}
void Bit::tick()
{
Mux(out, in, load, &out);
load = 0;
}
}

int main()

{
hack::Bit b;
b.in=1;
b.load = 1;
b.tick();
return O;

}

NOTE: namespaces help to avoid name conflicts

Defining classes in C++

class Box{ class Box {
lic:
protected float mySize = 1.0f; p;ct))xl(:‘:loat Y
public Box(float s) { At
mySize = s; mySize = s;
| }
} float getSize() {
T Size;
public float getSize() { } return mysize
} return mysizes protected:

float mySize = 1.0f;

} b

Simulating RAM

Build up memory recursively from smaller components

Data
Flip-Flop

)

DFF

1-bit
register

Bit

16-bit register

Bit](Bit]---

&)

Register

gandom Access Memory\

0 | Register

1 | Register

r

n-1| Register

\\h_ RAMn 4//

Simulating RAM of different sizes

template <class T, int k>
class RAM
{

public:

RAM() : load(0) { Zero16(in); Zero16(out); }

void tick()

{

}

ucharin[16];
uchar out[16];
TMI8];

uchar address[16];
uchar load;

|

typedef RAM<Register,3> RAMS;
typedef RAM<RAMS8,6> RAM64;

int main()

{
hack::RAM8 ram8;

dec2bin(9, rama8.in);

// Set address to 2
ram8.address[0] = 0;
ram8.address[1] =1;
ram8.address[2] = 0;

ram8.load =1;
print_memory(&ram8); ram8.tick();
print_memory(&ram8);

return O;

Simulating RAM of different sizes

template <class T, int k>
class RAM
{

public:

RAM() : load(0) { Zero16(in); Zero16(out); }

void tick()

{

}

ucharin[16];
uchar out[16];

T M[8];

uchar address[16];
uchar load;

|

typedef RAM<Register,3> RAMS;
typedef RAM<RAMS8,6> RAM64;

Testing RAMS

int main()

{
hack::RAM8 ram8;

dec2bin(9, rama8.in);

// Set address to 2
ram8.address[0] = 0;
ram8.address[1] =1;
ram8.address[2] = 0;

ram8.load =1;
print_memory(&ram8); ram8.tick();
print_memory(&rams8);

return O;

namespaces

Avoids name conflicts
In .c files, the using keyword can be used to simplify names from a namespace

// register.h #include “register.h” #include “register.h”
namespace hack using namespace hack;
{ int main()
class Bit // one-bit data flip-flop { int main()
{ hack::Bit bit; {
public: return O; Bit bit;
Bit(); } return O;
void tick(); }
ucharin;
uchar load;
uchar out;
2
}

Hardware simulator design (part 2)

Use classes for components with persistent state

Components:

* Bit
* Register

e Counter
 RAM

Lab — Working with an integrated circuit (IC)

An integrated circuit, or
chip, combines
electronic components.

Goal: Using a
breadboard, we will
visualize the output of
either a 4-bit adder or xor
using LEDs.

Background: circuits

A circuit is a circular flow of electricity.

Electricity wants to flow from high voltage (+) to low voltage (-)

Power sources have two sides
Positive (+): denoted with red color
Negative (-): called ground and denoted with black or blue color

Watch out: never plug the positive voltage source directly into the ground
voltage source (short circuit)

Watch out: if there is no connected loop between the voltage source and
ground, nothing will happen (open circuit)

https://learn.sparkfun.com/tutorials/what-is-a-circuit

Getting started with breadboards

Breadboards allow you to prototype
circuits without soldering

We plug in the board using the binding
posts

Chips are placed in the middle (DIP
support)

Power is siphoned from the power rails
to components/pins located on
different terminal strips

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard

Placing ICs on a breadboard

Dual In-line Package
(DIP) refers to ICs that ’
sit over the middle of

the breadboard.

Ravine-for
‘ D’l'l’- ICs

~
“ -
v 3 " g -
. @ ® J
N - o ° J
- v ® * J
- - J
- " ® g
- ° ® J . »
> . o .
> - * J \
. ® * J ‘ :
- . * v ; i \
------ 1 . '
@ T NN : . ! |
- o " . ' ' .
- > -
. . '
- »

.....

vvvv

Aside: Why are these called breadboards?

Early engineers
would prototype
circuits by
wrapping wires
around nailsin a
wooden board, like
those used to cut
bread

Powering the breadboard

» —
’ oy,
Wia.

Binding Post for Banana Cables and Wires

A breadboard b€ing pOW@fEd thrOUgh the blndlng pOStS from banana cables. Two jumper wires used to connect the power rails on both sides. Always attach the +'to +' and the ~' to *"

Breadboard safety

We will be working with 5V current.

1. Always work on your circuit with the power disconnected, and check your
circuit carefully before plugging it in.

2. If you see smoke coming out of your circuit, or one of the circuit components
becomes very hot, unplug the microcontroller immediately.

. Never connect power pins (5V, 3.3V, Vin) to ground (GND).

. Always use color conventions for power wires (red = power, black = ground).

. Keep wires as short as possible and avoid crossing wires or components over
each other.

6. Keep water away from your circuits as possible.

o b~ W

Breadboard safety

5V is a low current and the risk is low. However,
be particularly careful of the following

* MAKE SURE that the power (VCC) and ground
pins of your circuit are connected to the
correct power rails

* A mistake can both burn out the chip and your 7
fingers
 ALWAYS use red for power and black for ground

« ALWAYS place a resistor with your LEDs Zzgé‘fgﬁgst”tﬁgtg:iga” be
* A mistake can burn our the LED

Breadboard best practices

. e - —
B TI 1 a 1 9]
¥ 2z 0 Il 0 W Exssis|iiiix
¥ ¥ i iE
i 3 % iN 3
. 3 iis ||z x PN EEER]
Keep the design . . 5 == sxlll =x5x QXXX
. 3 3 ¥ in PN infla AEAE
simple so you can T+t - —+1 1 ;“i
3 iiar ¥ iE PN TEeE - BPE R PN
follow the X XXX x 10lf| = = xlflio%® l: ZII_I XX
. 3 PEE X iE T s 5 1 fi=x PN
connections of IEXE 1 [ilxx ittt -1l B
: : FEEER ¥ iE iE iilii|Eiiaig = iE
yOUI’CII’CUItS PEEEE ¥ iifiE 111;1
illhs asass|Eissss sl = ilfis st s inks iE
iE 2o e 0l PRSP W PN Pe00l RO P iE
iE 2o 0l FEEE RSP in iE 2o 0l FEEEP iE
, X iE 2ol FERPER iE iE P00l FEPEP iR
Don’t criss-cross PN 20l EET RSP iE iE 2o eel EEEE R iR
. W Exa s | EEEEE 20 PP e el FEEEP
wires and PN P00l FEPEP W iR 2o 81l FEER R iR
iE 2o e 0l EEE RSP i PN iiiiE|EiiiEs iR
components i PR RN FER AN iR N PEEE N PEE AN iR
iE 2ot el EEE R R iE iE St el EEE R R iR
iillps saaas|EsssssiiEs iillsiassss|issss iE
2ol FEPER 2o o8l FEEE R

(2) (b)

LEDs (Light-Emitting Diodes)

LEDS have a positive leg and a negative
leg

Electricity will only flow through the LED
In the right direction |

_LEDs will burn out if the current is too | |
nigh. Always place a resistor next to the |
_ED.

Resistors

Resistors resist the flow of electricity.
Use resistors to protect sensitive components like LEDS
The strength of the resistor is measured in ohms and indicated by the colored

stripes on the resistor.

1))

Step 1: Hook up power

Plug-in your breadboard with
the 5V power source.

Connect the binding posts to
the power rail

WATCH OUT to always
connect positive to positive
and negative to negative.

Use a multimeter that the
power is setup correctly.

Aside: Reading voltage with a multimeter

A multimeter is tool for measuring voltage

and resistance and is useful for debugging
circuits.

Set the
meter to
read 20V
voltage

https://docs.arduino.cc/learn/electronics/multimeter-basics/

Step 2: Add LEDs and connect both power rails

2a. Connect the other power
rail

2b. Add your LEDs and
resistors.
PZALEEIE I PN -

Step 3: Setup and test your IC

3a. Use the data sheet for your chip to get the pin layout. See next
slides.

3b. Connect the chip to power (be careful here!)

3c. The input pins are not in order. Wire the inputs so that the Avalue is
on one side of the board and the B values on the other.

3d. Connect the outputs to the LEDS. Again, watch out for the pin order!

XOR: SL74LS86

LOGIC DIAGRAM

PIN 14 =V
PIN 7=GND

YI

Y2

Y3

Y4

PIN ASSIGNMENT
al e\ 11l Veo
m 2 13[B4
Y103 12[A4
arlls nl ¥
R1[]5 K[B
villsa AL as
GND [] 7 5[¥3
FUNCTION TABLE
Inputs Output
A B Y
L L
L H H
H L H
H H L

FUNCTION TABLE

: 74L.5283

Adder

QUTPUT

WHEN

. —
= .V.LLLLLHHHLHHHHH

Co=H

{(TOP VIEW)
2 [Us vVee

B3

A3
23

4

A4

B
24

C4

15
14
13
12

11

2
3

4

10

5
6
7
8

9

:

]

B2
A2
21

Al
B1
CO
GND

	Slide 1: Agenda
	Slide 2: Simulating gates and other hardware
	Slide 3: HDL Demo: XOR Gate
	Slide 4: C Demo: HDL to C
	Slide 5: Review: Pass by value vs Pass by Pointer
	Slide 6: Hardware simulator design (part 1)
	Slide 7: Simulating memory
	Slide 8: Simulating a 1-bit DFF in C++
	Slide 9: Defining classes in C++
	Slide 10: Simulating RAM
	Slide 11: Simulating RAM of different sizes
	Slide 12: Simulating RAM of different sizes
	Slide 13: Testing RAM8
	Slide 14: namespaces
	Slide 15: Hardware simulator design (part 2)
	Slide 16: Lab – Working with an integrated circuit (IC)
	Slide 17: Background: circuits
	Slide 18: Getting started with breadboards
	Slide 19: Placing ICs on a breadboard
	Slide 20: Aside: Why are these called breadboards?
	Slide 21: Powering the breadboard
	Slide 22: Breadboard safety
	Slide 23: Breadboard safety
	Slide 24: Breadboard best practices
	Slide 25: LEDs (Light-Emitting Diodes)
	Slide 26: Resistors
	Slide 27: Step 1: Hook up power
	Slide 28: Aside: Reading voltage with a multimeter
	Slide 29: Step 2: Add LEDs and connect both power rails
	Slide 30: Step 3: Setup and test your IC
	Slide 31: XOR: SL74LS86
	Slide 32: Adder: 74LS283

