
Agenda

Simulating gates, circuits, and storage
HDL to C/C++
C/C++ review

Lab – Working with an integrated circuits (IC)
Getting started with breadboards

Simulating gates and other hardware
Idea: Simulate hardware designs before building them

• Design the chip architecture
• Encode the design with HDL
• Simulate the chip and optimize the design
• Manufacture the physical chip

HDL – Hardware Description Language
VHDL – Virtual Hardware Description Language

HDL Demo: XOR Gate

From nand2tetris.org

C Demo: HDL to C
CHIP Xor {
 IN a, b;
 OUT out;

 PARTS:
 Not(in=a, out=nota);
 Not(in=b, out=notb);
 And(a=a, b=notb, out=w1);
 And(a=nota, b=b, out=w2);
 Or(a=w1, b=w2, out=out);
}

void Xor(uchar a, uchar b, uchar* out)
{
 uchar nota, notb, w1, w2;
 Not(a, ¬a);
 Not(b, ¬b);
 And(a, notb, &w1);
 And(nota, b, &w2);
 Or(w1, w2, out);
}

Goal: Build all gates from Nand

Write code to test inputs/outputs

Review: Pass by value vs Pass by Pointer
typedef unsigned char uchar;

void Xor(uchar a, uchar b, uchar* out)
{
 uchar nota, notb, w1, w2;
 Not(a, ¬a);
 Not(b, ¬b);
 And(a, notb, &w1);
 And(nota, b, &w2);
 Or(w1, w2, out);
}

int main()
{
 uchar x, y, result;
 Xor(x, y, &result);
 return 0;
}

Hardware simulator design (part 1)

Use functions to simulate chips with no persistent state

Operations

Simulating memory

Simulating a 1-bit DFF in C++

// register .c
namespace hack
{
 Bit::Bit() : load(0), out(0), in(0) {}
 void Bit::tick()
 {
 Mux(out, in, load, &out);
 load = 0;
 }
}

// register.h
namespace hack
{
 class Bit // one-bit data flip-flop
 {
 public:
 Bit();
 void tick();
 uchar in;
 uchar load;
 uchar out;
 };
}

NOTE: namespaces help to avoid name conflicts

int main()
{
 hack::Bit b;
 b.in = 1;
 b.load = 1;
 b.tick();
 return 0;
}

Defining classes in C++
class Box {
 protected float mySize = 1.0f;
 public Box(float s) {
 mySize = s;
 }

 public float getSize() {
 return mySize;
 }
}

class Box {
 public:
 Box(float s) {
 mySize = s;
 }
 float getSize() {
 return mySize;
 }
 protected:
 float mySize = 1.0f;
};

Simulating RAM

Build up memory recursively from smaller components

Simulating RAM of different sizes
template <class T, int k>

 class RAM
 {
 public:
 RAM() : load(0) { Zero16(in); Zero16(out); }
 void tick()
 {
 }

 uchar in[16];
 uchar out[16];
 T M[8];
 uchar address[16];
 uchar load;
 };

 typedef RAM<Register,3> RAM8;
 typedef RAM<RAM8,6> RAM64;

int main()
{
 hack::RAM8 ram8;

 dec2bin(9, ram8.in);

 // Set address to 2
 ram8.address[0] = 0;
 ram8.address[1] = 1;
 ram8.address[2] = 0;
 ram8.load = 1;
 print_memory(&ram8); ram8.tick();
 print_memory(&ram8);
 return 0;
}

Simulating RAM of different sizes
template <class T, int k>

 class RAM
 {
 public:
 RAM() : load(0) { Zero16(in); Zero16(out); }
 void tick()
 {
 }

 uchar in[16];
 uchar out[16];
 T M[8];
 uchar address[16];
 uchar load;
 };

 typedef RAM<Register,3> RAM8;
 typedef RAM<RAM8,6> RAM64;

Testing RAM8

int main()
{
 hack::RAM8 ram8;

 dec2bin(9, ram8.in);

 // Set address to 2
 ram8.address[0] = 0;
 ram8.address[1] = 1;
 ram8.address[2] = 0;
 ram8.load = 1;
 print_memory(&ram8); ram8.tick();
 print_memory(&ram8);
 return 0;
}

namespaces

// register.h
namespace hack
{
 class Bit // one-bit data flip-flop
 {
 public:
 Bit();
 void tick();
 uchar in;
 uchar load;
 uchar out;
 };
}

Avoids name conflicts
In .c files, the using keyword can be used to simplify names from a namespace

#include “register.h”

int main()
{
 hack::Bit bit;
 return 0;
}

#include “register.h”
using namespace hack;

int main()
{
 Bit bit;
 return 0;
}

Hardware simulator design (part 2)

Use classes for components with persistent state

Components:

• Bit
• Register
• Counter
• RAM

Lab – Working with an integrated circuit (IC)

An integrated circuit, or
chip, combines
electronic components.

Goal: Using a
breadboard, we will
visualize the output of
either a 4-bit adder or xor
using LEDs.

Background: circuits

A circuit is a circular flow of electricity.

Electricity wants to flow from high voltage (+) to low voltage (-)
Power sources have two sides

Positive (+): denoted with red color
Negative (-): called ground and denoted with black or blue color

Watch out: never plug the positive voltage source directly into the ground
voltage source (short circuit)

Watch out: if there is no connected loop between the voltage source and
ground, nothing will happen (open circuit)

https://learn.sparkfun.com/tutorials/what-is-a-circuit

Getting started with breadboards
Breadboards allow you to prototype
circuits without soldering

We plug in the board using the binding
posts

Chips are placed in the middle (DIP
support)

Power is siphoned from the power rails
to components/pins located on
different terminal strips

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard

Placing ICs on a breadboard

Dual In-line Package
(DIP) refers to ICs that
sit over the middle of
the breadboard.

Aside: Why are these called breadboards?

Early engineers
would prototype
circuits by
wrapping wires
around nails in a
wooden board, like
those used to cut
bread

Powering the breadboard

Breadboard safety
We will be working with 5V current.

1. Always work on your circuit with the power disconnected, and check your
circuit carefully before plugging it in.

2. If you see smoke coming out of your circuit, or one of the circuit components
becomes very hot, unplug the microcontroller immediately.

3. Never connect power pins (5 V, 3.3V, Vin) to ground (GND).
4. Always use color conventions for power wires (red = power, black = ground).
5. Keep wires as short as possible and avoid crossing wires or components over

each other.
6. Keep water away from your circuits as possible.

Breadboard safety
5V is a low current and the risk is low. However,
be particularly careful of the following

• MAKE SURE that the power (VCC) and ground
pins of your circuit are connected to the
correct power rails
• A mistake can both burn out the chip and your

fingers
• ALWAYS use red for power and black for ground

• ALWAYS place a resistor with your LEDs
• A mistake can burn our the LED

7

The half-moon notch can be
used to orient the chip.

14

Breadboard best practices
Be Tidy

Keep the design
simple so you can
follow the
connections of
your circuits

Don’t criss-cross
wires and
components

LEDs (Light-Emitting Diodes)

LEDS have a positive leg and a negative
leg

Electricity will only flow through the LED
in the right direction

LEDs will burn out if the current is too
high. Always place a resistor next to the
LED.

+
-

Resistors

Resistors resist the flow of electricity.

Use resistors to protect sensitive components like LEDS

The strength of the resistor is measured in ohms and indicated by the colored
stripes on the resistor.

Step 1: Hook up power
Plug-in your breadboard with
the 5V power source.

Connect the binding posts to
the power rail

WATCH OUT to always
connect positive to positive
and negative to negative.

Use a multimeter that the
power is setup correctly.

Aside: Reading voltage with a multimeter

A multimeter is tool for measuring voltage
and resistance and is useful for debugging
circuits.

https://docs.arduino.cc/learn/electronics/multimeter-basics/

Set the
meter to
read 20V
voltage

Step 2: Add LEDs and connect both power rails
2a. Connect the other power
rail

2b. Add your LEDs and
resistors.

Step 3: Setup and test your IC
3a. Use the data sheet for your chip to get the pin layout. See next
slides.

3b. Connect the chip to power (be careful here!)

3c. The input pins are not in order. Wire the inputs so that the A value is
on one side of the board and the B values on the other.

3d. Connect the outputs to the LEDS. Again, watch out for the pin order!

XOR: SL74LS86

Adder: 74LS283

	Slide 1: Agenda
	Slide 2: Simulating gates and other hardware
	Slide 3: HDL Demo: XOR Gate
	Slide 4: C Demo: HDL to C
	Slide 5: Review: Pass by value vs Pass by Pointer
	Slide 6: Hardware simulator design (part 1)
	Slide 7: Simulating memory
	Slide 8: Simulating a 1-bit DFF in C++
	Slide 9: Defining classes in C++
	Slide 10: Simulating RAM
	Slide 11: Simulating RAM of different sizes
	Slide 12: Simulating RAM of different sizes
	Slide 13: Testing RAM8
	Slide 14: namespaces
	Slide 15: Hardware simulator design (part 2)
	Slide 16: Lab – Working with an integrated circuit (IC)
	Slide 17: Background: circuits
	Slide 18: Getting started with breadboards
	Slide 19: Placing ICs on a breadboard
	Slide 20: Aside: Why are these called breadboards?
	Slide 21: Powering the breadboard
	Slide 22: Breadboard safety
	Slide 23: Breadboard safety
	Slide 24: Breadboard best practices
	Slide 25: LEDs (Light-Emitting Diodes)
	Slide 26: Resistors
	Slide 27: Step 1: Hook up power
	Slide 28: Aside: Reading voltage with a multimeter
	Slide 29: Step 2: Add LEDs and connect both power rails
	Slide 30: Step 3: Setup and test your IC
	Slide 31: XOR: SL74LS86
	Slide 32: Adder: 74LS283

