Agenda

Hack, the big picture: simulation from gates to computer

Hack Hardware Architecture
Gates revisited: Theory
ALU Implementation
Storage Implementation

The big picture: Nand to Tetris

Semester Goal: Build a computer
from first principles

Idea: Code is translated to
hardware instructions through
multiple layers of abstraction

The big picture: Hack

/

abstract

software hierarchy \

concept —— abstraction
program .
high-level | _3| abstraction

language compiler
0Ss VM code |=———————ouJp| abstraction
L machine
language

assembler

/ v

abstraction

computer

N

abstraction

ALU, RAM

abstraction

elementary
logic gates

hardware platform

Nand to Tetris / www.nand2tetris.org / Copyright © Noam Nisan and Shimon Schocken

Today: finish talking
about these
components

The big picture: Hack

/

\

software hierarchy
abstract _
concept —— abstraction
program _
high-level | _3| abstraction
language compiler
0Ss VM code |=———————ouJp| abstraction
Ul machine
language
assembler

abstraction

abstraction

computer

ALU, RAM

chips

abstraction
elementary —
logic gates gates

hardware platform

Nand to Tetris / www.nand2tetris.org / Copyright © Noam Nisan and Shimon Schocken

Next: How our hardware
components fit together
and how we can
program it

The big picture: Hack

/

abstract
concept

= abstraction
program
high-level ———l
language compiler
0Ss

/v

abstraction

computer

assembler

—

abstraction

computer

N

ALU, RAM

chips

abstraction

VM code

software hierarchy \

VM

abstraction

machine

language

abstraction

elementary
logic gates

hardware platform

Next: Human readable
machine instructions

Nand to Tetris / www.nand2tetris.org / Copyright © Noam Nisan and Shimon Schocken

The big picture: Hack

/

software hierarchy

abstract _
concept = abstraction
program _
high-level abstraction
language compiler
0OS VM code abstraction
machine
\ language
assembler
(Y
abstraction hardware platform
computer ——————Jp abstraction
computer
ALU, RAM |=——————p-| abstraction
chips elementary = ()
logic gates gates

N

Compiling high-level
code (like C or JAVA) into
assembly language

Nand to Tetris / www.nand2tetris.org / Copyright © Noam Nisan and Shimon Schocken

The big picture: Hack

\

N

software hierarchy
abstract _
concept abstraction
T EE abstraction
language
0Ss VM code |=————————ouJp| abstraction
Ul machine
\ language
assembler
(Y
abstraction hardware platform
computer ——————Jp abstraction
computer
ALU, RAM |=——————p-| abstraction
chips elementary = ()
logic gates gates

Nand to Tetris / www.nand2tetris.org / Copyright © Noam Nisan and Shimon Schocken

(Maybe) Implement OS-
level system libraries for
the keyboard,
screen,memory, etc

Gates revisited: theory

Recall: Representations in binary
A binary variable can have two possible states (0 or 1)
Two binary variables can have 4 possible states (00, 01, 10, 11)
Three binary variables can have __ possible states

N binary variables can have have possible states

Boolean functions

A Boolean function operates on Boolean variables and returns a
Boolean variable

examples: AND, OR, NOT, NAND, etc

Notation:
f(x, y) = AND(x, y)
Xfy - xANDYvy

Example: How many Boolean functions exist
over two binary variables?

Example Boolean functions of two variables

O R O (R
0 0 0 0

Constant O
X 0 0] 1 1
Equivalence 1 0) 0 1

Constant 1 1 1 1 1

Exercise: Consider the function “if A then B”

Construct a composite gate
that implements this
function

Example: How many Boolean functions exist
over N binary variables?

We can represent a lot of functions using just binary variables....

Fun fact: Any Boolean function can be realized
using only Nand

Nand(x, y) And(x, y) Or(x, y) Not(x)
A (B jout WA (B |out EMA B |Out _ _m
0 0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 1 1
1 0
1 0 1 1 0 0 1 0 1
1 1 0 1 1 1 1 1 1
Not(x) =
And(x, y) =

Fun fact: Any Boolean function can be realized
using only Nand

Proof:

Any Boolean function can be expressed as a truth table.

Any truth table can be expressed as a Boolean function

using only Not, And, and Or (using Disjunctive Normal
Form)

Note that And, Not, and Or can be defined using Nand

Arithmetic Logic Unit (ALU)

Input

Memory

—
4

CPU

Registers

Goal: The ALU is a
component for
computing
expressions

=) Output

ALU

ldea: Computes a given function
on two n-bit input values, and
outputs an n-bit value

—

J(x,y)
> ALU >

Exercise/Review: Using Mux logic to build a
programmable gate

Suppose we want to build a gate that
e out behaves like AND when sel =0 and
behaves like OR when sel = 1.

se|

On the next slide:
if (sel ==0)
out = 2 And b 1. Draw the truth table

else 2. Draw the corresponding gate diagram
out=aolrb

Exercise/Review: Using Mux logic to build a
programmable gate

Exercise/Review: Multiplexor

Express Mux in terms of and, or, not

5 — a b sel out sel out
Mux out 0 0 0 0 0 a abbreviated
h — 0 1 0 0 1 b truth table
1 %) %) 1
sel 1 1 %) 1
if (sel==0) 0 g E =
out = a %] 1 1 1
else 1) 1 %]
out = b 1 1 1 1

Exercise/Review: Demultiplexor

ldea: Route a single input value to one of several destinations

Express DMux in terms of and, or, not

in sel a b
if (sel ==o) o | o |0 | o
- da * — .
in DMux {a, b} = {in, 0} 0 1 | o | o
— b else 1 %) 1 %)
{a, b} = {0, in} 1 1 | e | 1

sel

ALU implementation

Inputs:

* X:16-bitvalue

* y:16-bitvalue

e zXx:if true, sets x to zero

* nx:iftrue, sets xto !x

* zy:iftrue, setsyto zero

* ny:iftrue, setsytoly

* f.iftrue, computes out=x+y; else
computesout=xANDYy

* no:iftrue, sets out = lout

Outputs:

* out: 16-bit value

 zr:true when out == 0; false otherwise
* ng: true when out < 0; false otehrwise

nx zy ny f

b4y

no

i
N

16 bits

>

ALU

N\

Z

» out

/

Vo

Zr ng

16 bits

ALU Example:

Derive settings that compute the Boolean function out(x,y) = x&y

out(x

if zx if nXx if zy if ny If f then If no

then then then then out=x+y then

x=0 x=1x y=0 y=ly else out=!out
out = x&y

X&Y

ALU Example:

Derive settings that compute the Boolean function out(x,y) = x+y

out(x

if zx if nXx if zy if ny If f then If no

then then then then out=x+y then

x=0 x=1x y=0 y=ly else out=!out
out = x&y

X+y

ALU Example:

Derive settings that compute the Boolean function out(x,y) =0

If zX If nx If zy If ny If f then If no out(x
then then then then out=x+y then
x=0 X=X y=0 y=ly else out=!out

out = x&y

ALU Example:

Derive settings that compute the Boolean function out(x,y) = 1

if zx if nXx if zy if ny If f then If no out(x
then then then then out=x+y then
x=0 x=1x y=0 y=ly else out=!out

out = x&y

ALU Example:

Verify that the following settings compute the Boolean function out(x,y) =

if zx if nXx if zy if ny If f then If no out(x
then then then then out=x+y then
x=0 x=1x y=0 y=ly else out=!out

out = x&y

0 1 1 1 1 1 X+1

ALU Example

Verify that the previous settings computes the Boolean function
out(x,y) = x+1

Let x = 0x6 and y = 0x9

How it works: Boolean algebra Insights

x+1=1(Ix+1111)
—x=1(x+1111)
X=y=1{x+y)
X=x&1111
0=x&0000

and others...

Exercise: Outputs

How can we test if the output is zero?

How can we test if the output is negative?

Hint: You can access single bits from a value, e.g. x[2]

Exercise: Connect components to implement
the ALU

Memory

Input

e

Crepmers |

Goal: Memory needs
to hold values and
supportread and
write operations

Output

Recall: Representing time in hardware

Chip behavior over time (example: Not gate) Chip behavior over time (example: Not gate)

physical R p_hysical
time: time:

A J

clock: clock:

time: 12345 time: 12345

(examples

: : : : : (examples
of arbitrary %) H : : i : H

of arbitrary 0
values)

values)

out: 1 — out: 1 ; : : : : :
Not(in) 9 :

D —— — Not(in) o

Desired / idealized behavior of the in and out signals:

Actual behavior of the in and out signals:

That’s how we want the hardware to behave Influenced by physical time delays

Time and memory

Memory only works along side a concept of time
Need to create a mechanism that “knows” what its value was at the previous time

step lload

in out
Hardware needs time to settle into high/low values " '[el "

Solution: Clock time step is long enough to hide fluctuations “;k/::;k
Only change state when each time cycle ends :
Clock hardware is based on an oscillator

NOTE: In contrast, combinatorial gates react immediately to input

Recall: Gated R-S Latch

Data 4 : S

- Q (value store

Data flip-flop (DFF): 1-bit register

if load(f):
(Data) in ﬂUt(f+ 1) — lﬂ(f)
—> else
out(f+ 1) =out(¥)

1-bit register

Data flip-flop (simplified implementation)

load
/ i H\\
. . ’ }
1-bit register in ! v i i Toad(1):
) - > .

Stores one bit | Mux ; out(f+ 1) =1in(7)
over time L : else

: | out(z+ 1) = out(¢)

| :

I I

M o e

To read, simply get the value of out
To write, set in = newValue and load = true

Register

lload .
if load(?):
in out out(7+ 1) =1in(¥)
Register else
W A w out(f+ 1) =out(?)

We’ll focus on bit width w = 16,
without loss of generality

Random Access Memory (RAM)

lload

out

RAM#n
0 Register
1 Register
\.
-1 [Register

A\

i

>

Question: If RAM has N
registers, how many bits do
we need for the address?

Example: Suppose RAM has
8 registers.

RAM Behavior

If load == 0, the RAM maintains its state

If load == 1, RAM[address] is set to the
value of in

The loaded value will be emitted by out
from the next time-step (cycle) onward

(Only one RAM register is selected; All
the other registers are not affected)

lload

RAM#n
0 Register
1 Register
\.
-1 [Register

A\

RAM Usage

To read:
set address =i
probe out
(out = RAM[i] always)

To write:
set address =i
setin = newValue
set load =true
(R[i] = newValue)

Any random register can be read/writte
in one time cycle (thus the name RAM)

lload

RAM#n
0 Register
1 Register
\. v

L]
[]

n-l[Register]

A\

RAM implementation

RAM ofn
registers:

in

load

address

DMux
(1ton)

¢ load

in

t
Register ;u;,
W /\ w
¢ load
in . out
Register .
w /\ w
¢ load
in t
Register 701,
w /\ w

A

Mux
(nto 1)

Reading: Can be realized using a Mux

Writing: Can be realized using a DMux

Partial diagram,
showing chip-parts
without connections

out

Connections?
You figure it out

Direct access works
like so:

The storage behavior
uses sequential logic

But, the addressing
logic uses Mux/ DMux
chips, which are
combinational.

Larger blocks of RAM

RAM512

RAM64
RAM64
' N
RAMS v
L) RAM64
RAMS ()

RAMS
Register \ d .
— , :
egister) : Same technique can be
: RAMeA4 used to implement RAM
Register RAM8 . 1
devices of any size

Example: RAM addressing

Question: If RAM has N
registers, how many bits do
we need for the address?

RAM64
RAMS Example: Suppose RAM has
RAM8

Register h

Register

Register [RAM8]

Example: RAM addressing

Suppose we are working with RAM64. How many bits do we need?
What are the base addresses of each subblock?

RAM64
' N
RAMS8
.
RAMS8 [)
RAM8
Register \. J

Register

Register [RAM8]

Example: RAM addressing

Suppose we are
working with
RAM512. How many
bits do we need?

What are the base

addresses of each
subblock?

RAM512

RAM64

o

RAM64

/

RAM64

RAM chips needed for Hack

NOTE: In our simulator, all
addresses are 16 bits;
however, only a subset of

bits are used for each
memory layer

chip name 7 k
RAM8 8 3
RAM64 64 6
RAM512 512 9
RAM4K 4096 12
RAM16K | 16384 14

Counter

reset load 1inc

* # * if reset(z): out(s+1) = ©
in out else if load(z): out(z+1) = in(¢)
16 PC 16 elseif inc(z): out(r+1) = out(s) + 1
A else out(z+1) = out(s)

Implementation is based on a register (sub-class)

Additional gates (Mux16, Inc16) are added to the DFF to support the different
features: reset, load, inc

Will be used for storing the address of the next instruction

Counter Example

oul

reset
load
inc
in
cycle

clock

347

’
.
1
- .
. ’
i 827
4
4

22

B e)

527

23

§ 527

24

| §27

: 827 |

26

527 :

27

527 : 527 : 827

;527 ;528

527 |

31

527 |

32

: 529 | 530

. 530 .
. »
- >
. »
»

Recap: Sequential vs. Combinatorial Logic

1
" . . clock:
Combinational logic 0
The output depends time: 1 o 3 4 3
on current inputs only
The clock is used to in: a b c d e

St s LIt

Used for building chips out:: f(a) 1(b) f(c) f(d) f(e)

that do calculations

" . 1
Sequential logic clock:
The output depends on: 0
* Previous inputs time: 1 2 3 4 5
* And, optionally, also on
current inputs
in: a b c | d e
Used for building memory \ : \ : \‘ : \ i
chips (registers, RAM)
out:

flab) fbe) fled) [flde)

	Slide 1: Agenda
	Slide 2: The big picture: Nand to Tetris
	Slide 3: The big picture: Hack
	Slide 4: The big picture: Hack
	Slide 5: The big picture: Hack
	Slide 6: The big picture: Hack
	Slide 7: The big picture: Hack
	Slide 8: Gates revisited: theory
	Slide 9: Boolean functions
	Slide 10: Example: How many Boolean functions exist over two binary variables?
	Slide 11: Example Boolean functions of two variables
	Slide 12: Exercise: Consider the function “if A then B”
	Slide 13: Example: How many Boolean functions exist over N binary variables?
	Slide 14: Fun fact: Any Boolean function can be realized using only Nand
	Slide 15: Fun fact: Any Boolean function can be realized using only Nand
	Slide 16: Arithmetic Logic Unit (ALU)
	Slide 17: ALU
	Slide 18: Exercise/Review: Using Mux logic to build a programmable gate
	Slide 19: Exercise/Review: Using Mux logic to build a programmable gate
	Slide 20: Exercise/Review: Multiplexor
	Slide 21: Exercise/Review: Demultiplexor
	Slide 22: ALU implementation
	Slide 23: ALU Example:
	Slide 24: ALU Example:
	Slide 25: ALU Example:
	Slide 26: ALU Example:
	Slide 27: ALU Example:
	Slide 28: ALU Example
	Slide 29: How it works: Boolean algebra Insights
	Slide 30: Exercise: Outputs
	Slide 31: Exercise: Connect components to implement the ALU
	Slide 32: Memory
	Slide 33: Recall: Representing time in hardware
	Slide 34: Time and memory
	Slide 35: Recall: Gated R-S Latch
	Slide 36: Data flip-flop (DFF): 1-bit register
	Slide 37: Data flip-flop (simplified implementation)
	Slide 38: Register
	Slide 39: Random Access Memory (RAM)
	Slide 40: RAM Behavior
	Slide 41: RAM Usage
	Slide 42: RAM implementation
	Slide 43: Larger blocks of RAM
	Slide 44: Example: RAM addressing
	Slide 45: Example: RAM addressing
	Slide 46: Example: RAM addressing
	Slide 47: RAM chips needed for Hack
	Slide 48: Counter
	Slide 49: Counter Example
	Slide 51: Recap: Sequential vs. Combinatorial Logic

