
Agenda

Hack, the big picture: simulation from gates to computer

Hack Hardware Architecture
Gates revisited: Theory
ALU Implementation
Storage Implementation

The big picture: Nand to Tetris

Semester Goal: Build a computer
from first principles

Idea: Code is translated to
hardware instructions through
multiple layers of abstraction

The big picture: Hack

Today: finish talking
about these
components

The big picture: Hack

Next: How our hardware
components fit together
and how we can
program it

The big picture: Hack

Next: Human readable
machine instructions

The big picture: Hack

Compiling high-level
code (like C or JAVA) into
assembly language

The big picture: Hack

(Maybe) Implement OS-
level system libraries for
the keyboard,
screen,memory, etc

Gates revisited: theory

Recall: Representations in binary

A binary variable can have two possible states (0 or 1)

Two binary variables can have 4 possible states (00, 01, 10, 11)

Three binary variables can have _____ possible states

N binary variables can have have ______ possible states

Boolean functions

A Boolean function operates on Boolean variables and returns a
Boolean variable

examples: AND, OR, NOT, NAND, etc

Notation:
f(x, y) → AND(x, y)
x f y → x AND y

Example: How many Boolean functions exist
over two binary variables?

A B Out

0 0 ?

0 1 ?

1 0 ?

1 1 ?

Example Boolean functions of two variables

Function 0 0 1 1

0 1 0 1

Constant 0 0 0 0 0

x 0 0 1 1

Equivalence 1 0 0 1

Constant 1 1 1 1 1

Exercise: Consider the function “if A then B”
A B f(A, B)

0 0 1

0 1 1

1 0 0

1 1 1

Construct a composite gate
that implements this
function

Example: How many Boolean functions exist
over N binary variables?

We can represent a lot of functions using just binary variables....

Fun fact: Any Boolean function can be realized
using only Nand

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A Out

0 1

1 0

Not(x) =
And(x, y) =
Or(x, y) =

Nand(x, y) And(x, y) Or(x, y) Not(x)

Fun fact: Any Boolean function can be realized
using only Nand

Proof:

Any Boolean function can be expressed as a truth table.

Any truth table can be expressed as a Boolean function
using only Not, And, and Or (using Disjunctive Normal
Form)

Note that And, Not, and Or can be defined using Nand

Arithmetic Logic Unit (ALU)
Goal: The ALU is a
component for
computing
expressions

ALU
Idea: Computes a given function
on two n-bit input values, and
outputs an n-bit value

Exercise/Review: Using Mux logic to build a
programmable gate

Suppose we want to build a gate that
behaves like AND when sel = 0 and
behaves like OR when sel = 1.

On the next slide:
1. Draw the truth table
2. Draw the corresponding gate diagram

Exercise/Review: Using Mux logic to build a
programmable gate
a b sel output

Exercise/Review: Multiplexor
Express Mux in terms of and, or, not

Exercise/Review: Demultiplexor

Idea: Route a single input value to one of several destinations

Express DMux in terms of and, or, not

ALU implementation
Inputs:
• x: 16-bit value
• y: 16-bit value
• zx: if true, sets x to zero
• nx: if true, sets x to !x
• zy: if true, sets y to zero
• ny: if true, sets y to !y
• f: if true, computes out = x + y; else

computes out = x AND y
• no: if true, sets out = !out

Outputs:
• out: 16-bit value
• zr: true when out == 0; false otherwise
• ng: true when out < 0; false otehrwise

ALU Example:

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f then
out=x+y
else
out = x&y

if no
then
out=!out

out(x,y)

x&y

Derive settings that compute the Boolean function out(x,y) = x&y

ALU Example:

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f then
out=x+y
else
out = x&y

if no
then
out=!out

out(x,y)

x+y

Derive settings that compute the Boolean function out(x,y) = x+y

ALU Example:

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f then
out=x+y
else
out = x&y

if no
then
out=!out

out(x,y)

0

Derive settings that compute the Boolean function out(x,y) = 0

ALU Example:

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f then
out=x+y
else
out = x&y

if no
then
out=!out

out(x,y)

1

Derive settings that compute the Boolean function out(x,y) = 1

ALU Example:

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f then
out=x+y
else
out = x&y

if no
then
out=!out

out(x,y)

0 1 1 1 1 1 x+1

Verify that the following settings compute the Boolean function out(x,y) = x-1

ALU Example

Verify that the previous settings computes the Boolean function
out(x,y) = x+1

Let x = 0x6 and y = 0x9

How it works: Boolean algebra Insights

x + 1 = !(!x + 1111)

–x = !(x + 1111)

x – y = !(!x + y)

x = x & 1111

0 = x & 0000

and others...

Exercise: Outputs

How can we test if the output is zero?

How can we test if the output is negative?

Hint: You can access single bits from a value, e.g. x[2]

Exercise: Connect components to implement
the ALU

Memory Goal: Memory needs
to hold values and
support read and
write operations

Recall: Representing time in hardware

Time and memory

Memory only works along side a concept of time
Need to create a mechanism that “knows” what its value was at the previous time
step

Hardware needs time to settle into high/low values

Solution: Clock time step is long enough to hide fluctuations
Only change state when each time cycle ends
Clock hardware is based on an oscillator

NOTE: In contrast, combinatorial gates react immediately to input

Recall: Gated R-S Latch

Q (value stored)

~Q

S

R

R-S Latch
Data

WE

Data WE S R Q

0 0

0 1

1 0

1 1

Data flip-flop (DFF): 1-bit register

(WE)

(Q)(Data)

Data flip-flop (simplified implementation)

To read, simply get the value of out
To write, set in = newValue and load = true

Register

Random Access Memory (RAM)
Question: If RAM has N
registers, how many bits do
we need for the address?

Example: Suppose RAM has
8 registers.

RAM Behavior
If load == 0, the RAM maintains its state

If load == 1, RAM[address] is set to the
value of in

The loaded value will be emitted by out
from the next time-step (cycle) onward

(Only one RAM register is selected; All
the other registers are not affected)

RAM Usage
To read:

set address = i
probe out
(out = RAM[i] always)

To write:
set address = i
set in = newValue
set load = true
(R[i] = newValue)

Any random register can be read/written
in one time cycle (thus the name RAM)

RAM implementation

Direct access works
like so:

The storage behavior
uses sequential logic

But, the addressing
logic uses Mux / DMux
chips, which are
combinational.

Larger blocks of RAM

Example: RAM addressing
Question: If RAM has N
registers, how many bits do
we need for the address?

Example: Suppose RAM has
8 registers.

Example: RAM addressing
Suppose we are working with RAM64. How many bits do we need?
What are the base addresses of each subblock?

Example: RAM addressing

Suppose we are
working with
RAM512. How many
bits do we need?

What are the base
addresses of each
subblock?

RAM chips needed for Hack

NOTE: In our simulator, all
addresses are 16 bits;
however, only a subset of
bits are used for each
memory layer

Counter

Implementation is based on a register (sub-class)

Additional gates (Mux16, Inc16) are added to the DFF to support the different
features: reset, load, inc

Will be used for storing the address of the next instruction

Counter Example

Recap: Sequential vs. Combinatorial Logic

	Slide 1: Agenda
	Slide 2: The big picture: Nand to Tetris
	Slide 3: The big picture: Hack
	Slide 4: The big picture: Hack
	Slide 5: The big picture: Hack
	Slide 6: The big picture: Hack
	Slide 7: The big picture: Hack
	Slide 8: Gates revisited: theory
	Slide 9: Boolean functions
	Slide 10: Example: How many Boolean functions exist over two binary variables?
	Slide 11: Example Boolean functions of two variables
	Slide 12: Exercise: Consider the function “if A then B”
	Slide 13: Example: How many Boolean functions exist over N binary variables?
	Slide 14: Fun fact: Any Boolean function can be realized using only Nand
	Slide 15: Fun fact: Any Boolean function can be realized using only Nand
	Slide 16: Arithmetic Logic Unit (ALU)
	Slide 17: ALU
	Slide 18: Exercise/Review: Using Mux logic to build a programmable gate
	Slide 19: Exercise/Review: Using Mux logic to build a programmable gate
	Slide 20: Exercise/Review: Multiplexor
	Slide 21: Exercise/Review: Demultiplexor
	Slide 22: ALU implementation
	Slide 23: ALU Example:
	Slide 24: ALU Example:
	Slide 25: ALU Example:
	Slide 26: ALU Example:
	Slide 27: ALU Example:
	Slide 28: ALU Example
	Slide 29: How it works: Boolean algebra Insights
	Slide 30: Exercise: Outputs
	Slide 31: Exercise: Connect components to implement the ALU
	Slide 32: Memory
	Slide 33: Recall: Representing time in hardware
	Slide 34: Time and memory
	Slide 35: Recall: Gated R-S Latch
	Slide 36: Data flip-flop (DFF): 1-bit register
	Slide 37: Data flip-flop (simplified implementation)
	Slide 38: Register
	Slide 39: Random Access Memory (RAM)
	Slide 40: RAM Behavior
	Slide 41: RAM Usage
	Slide 42: RAM implementation
	Slide 43: Larger blocks of RAM
	Slide 44: Example: RAM addressing
	Slide 45: Example: RAM addressing
	Slide 46: Example: RAM addressing
	Slide 47: RAM chips needed for Hack
	Slide 48: Counter
	Slide 49: Counter Example
	Slide 51: Recap: Sequential vs. Combinatorial Logic

