Agenda

Hack, the big picture: simulation from gates to computer

Hack Hardware Architecture

Gates revisited: Theory

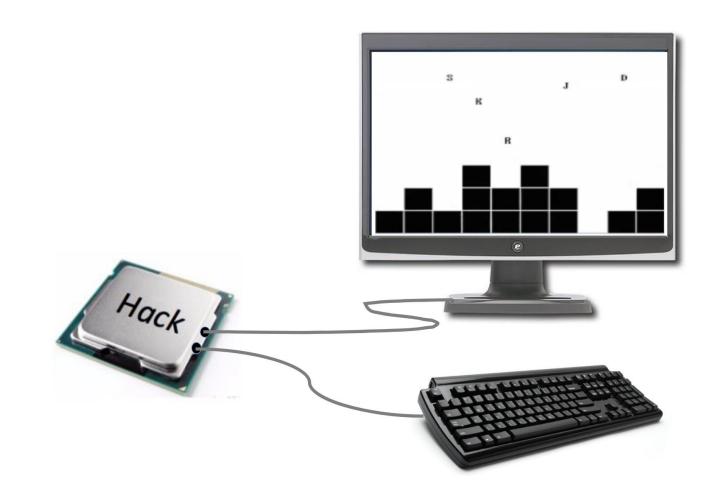
ALU Implementation

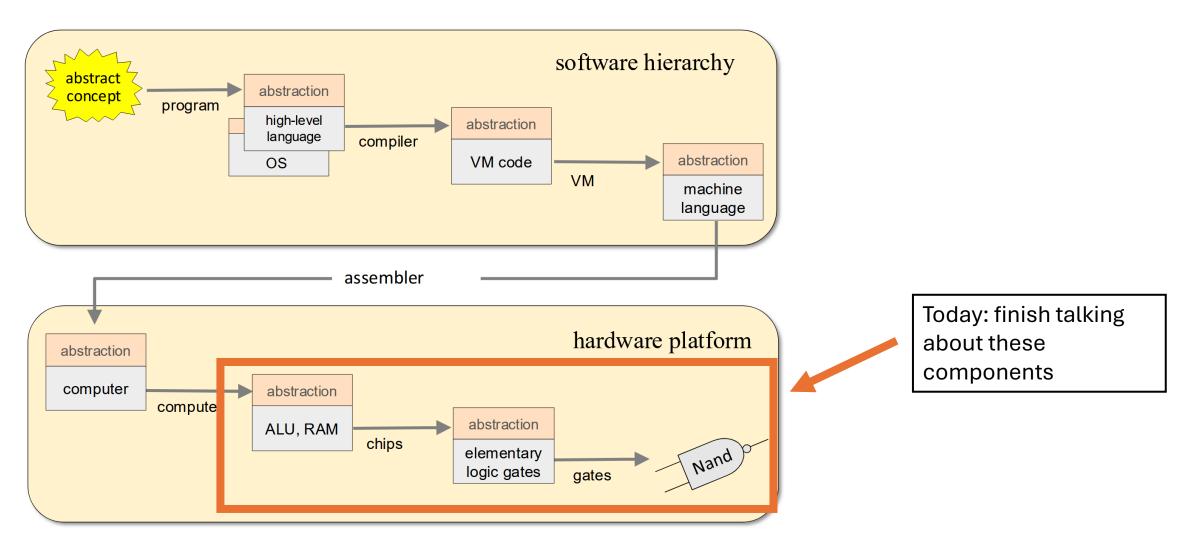
Storage Implementation

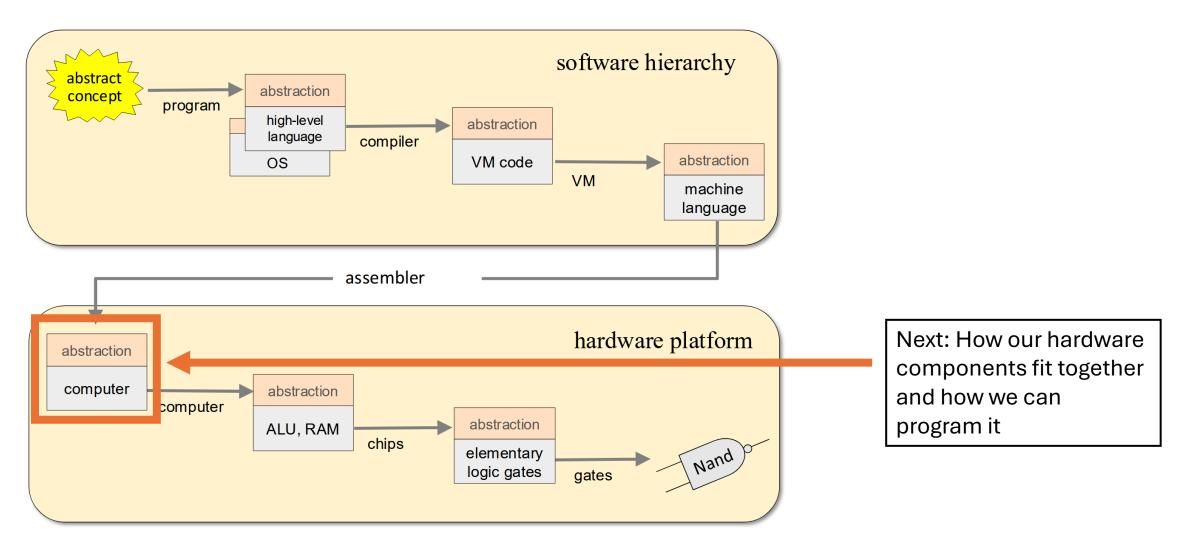
The big picture: Nand to Tetris

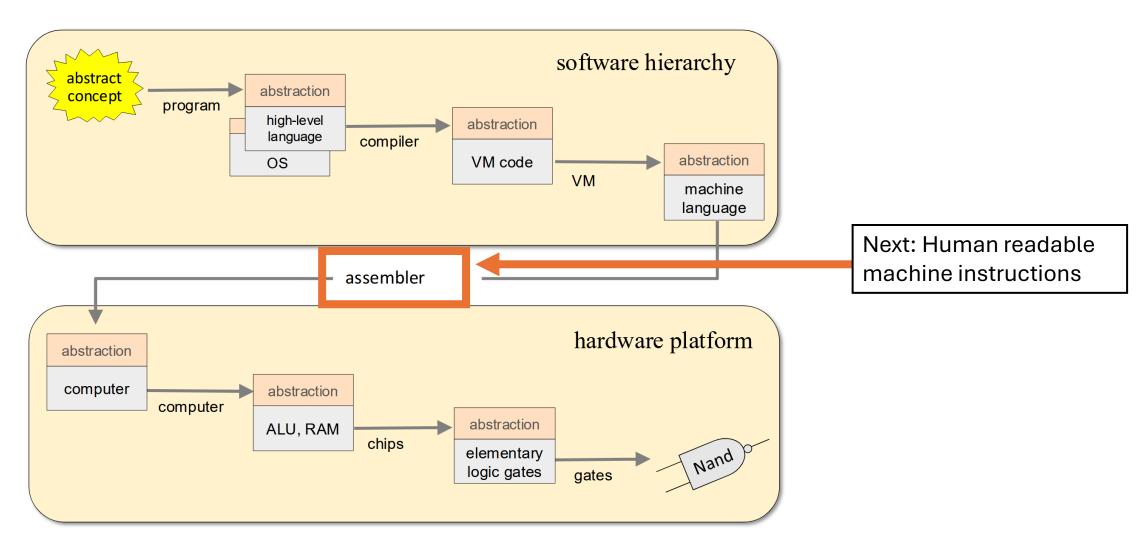
Semester Goal: Build a computer from first principles

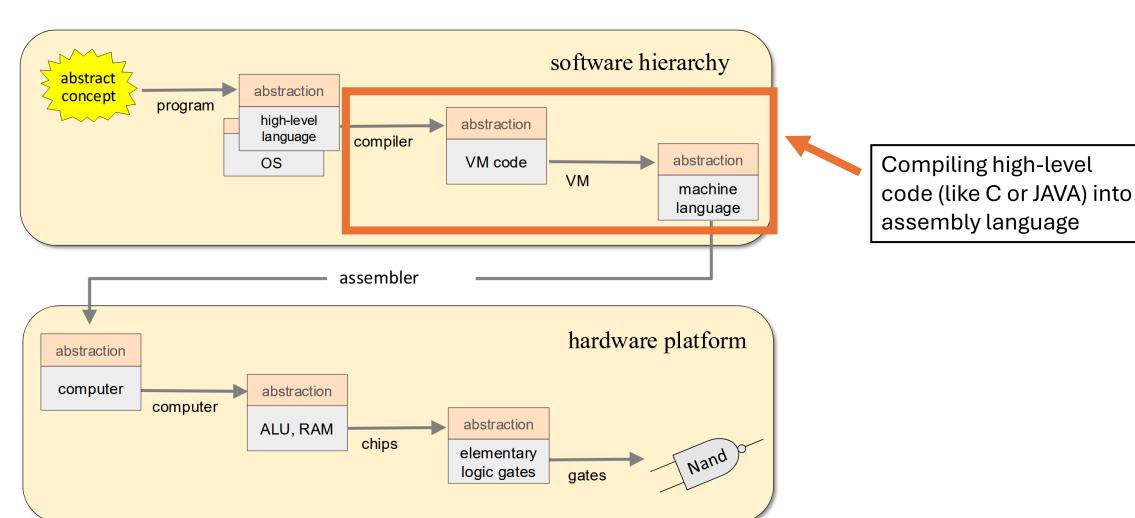
Idea: Code is translated to hardware instructions through multiple layers of abstraction

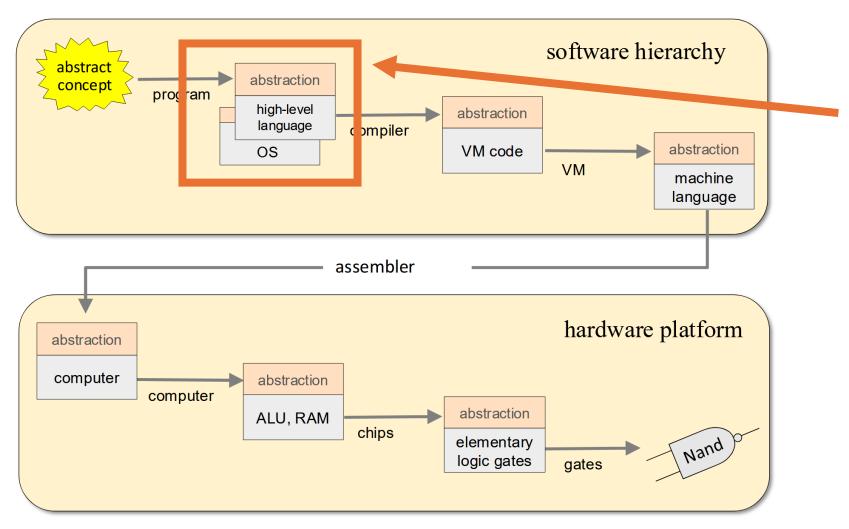












(Maybe) Implement OSlevel system libraries for the keyboard, screen, memory, etc

Gates revisited: theory

Recall: Representations in binary

A binary variable can have two possible states (0 or 1)

Two binary variables can have 4 possible states (00, 01, 10, 11)

Three binary variables can have _____ possible states

N binary variables can have have _____ possible states

Boolean functions

A **Boolean function** operates on Boolean variables and returns a Boolean variable

examples: AND, OR, NOT, NAND, etc

Notation:

```
f(x, y) \rightarrow AND(x, y)
 x f y \rightarrow x AND y
```

Example: How many Boolean functions exist over two binary variables?

Α	В	Out
0	0	?
0	1	?
1	0	?
1	1	?

Example Boolean functions of two variables

Function	0	0	1	1
	0	1	0	1
Constant 0	0	0	0	0
X	0	0	1	1
Equivalence	1	0	0	1
Constant 1	1	1	1	1

Exercise: Consider the function "if A then B"

Α	В	f(A, B)
0	0	1
0	1	1
1	0	0
1	1	1

Construct a composite gate that implements this function

Example: How many Boolean functions exist over N binary variables?

We can represent a lot of functions using just binary variables....

Fun fact: Any Boolean function can be realized using only Nand

Nand(x, y)

A	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

And(x, y)

A	В	Out
0	0	0
0	1	0
1	0	0
1	1	1

Or(x, y)

A	В	Out
0	0	0
0	1	1
1	0	1
1	1	1

A	Out
0	1
1	0

$$Not(x) =$$

And
$$(x, y) =$$

$$Or(x, y) =$$

Fun fact: Any Boolean function can be realized using only Nand

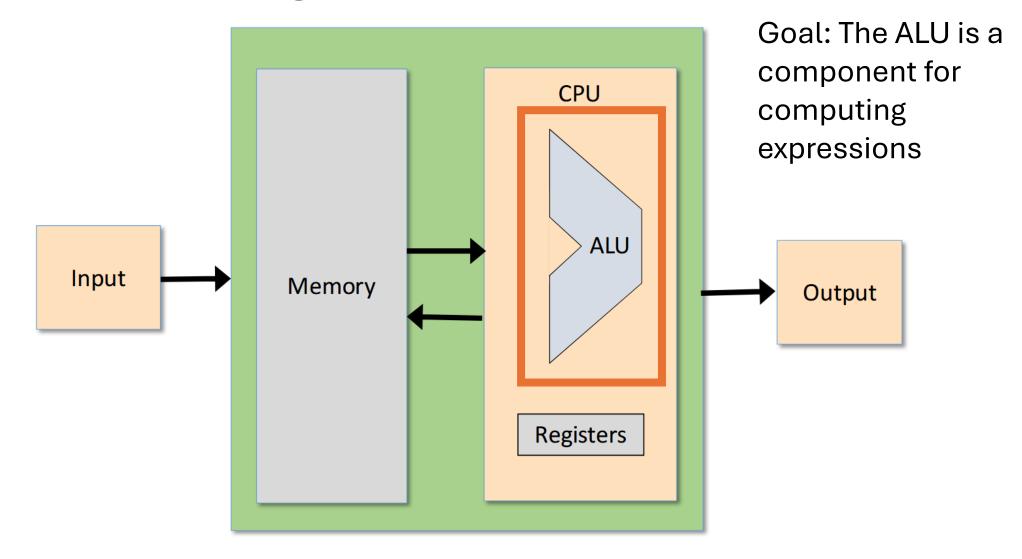
Proof:

Any Boolean function can be expressed as a truth table.

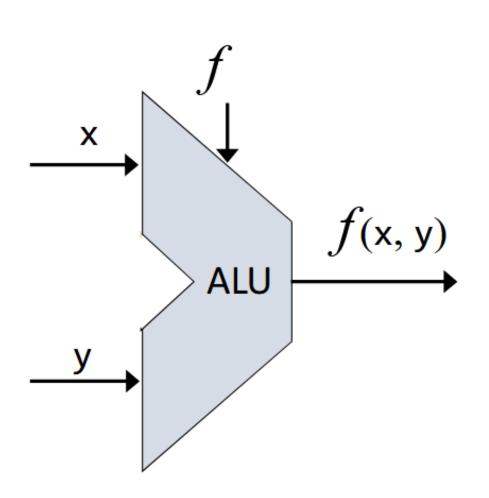
Any truth table can be expressed as a Boolean function using only Not, And, and Or (using Disjunctive Normal Form)

Note that And, Not, and Or can be defined using Nand

Arithmetic Logic Unit (ALU)

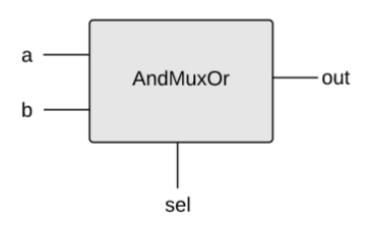


ALU



Idea: Computes a given function on two n-bit input values, and outputs an n-bit value

Exercise/Review: Using Mux logic to build a programmable gate



Suppose we want to build a gate that behaves like AND when sel = 0 and behaves like OR when sel = 1.

On the next slide:

- 1. Draw the truth table
- 2. Draw the corresponding gate diagram

Exercise/Review: Using Mux logic to build a programmable gate

а	b	sel	output

Exercise/Review: Multiplexor

Express Mux in terms of and, or, not



а	b	sel	out
0	0	0	0
0	1	0	0
1	0	0	1
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

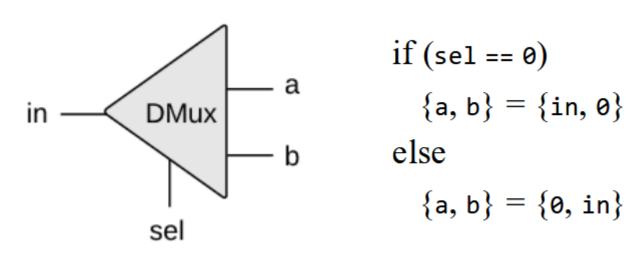
sel	out
0	а
1	b

abbreviated truth table

Exercise/Review: Demultiplexor

Idea: Route a single input value to one of several destinations

Express DMux in terms of and, or, not



in	sel a		b
0	0	0	0
0	1	0	0
1	0	1	0
1	1	0	1

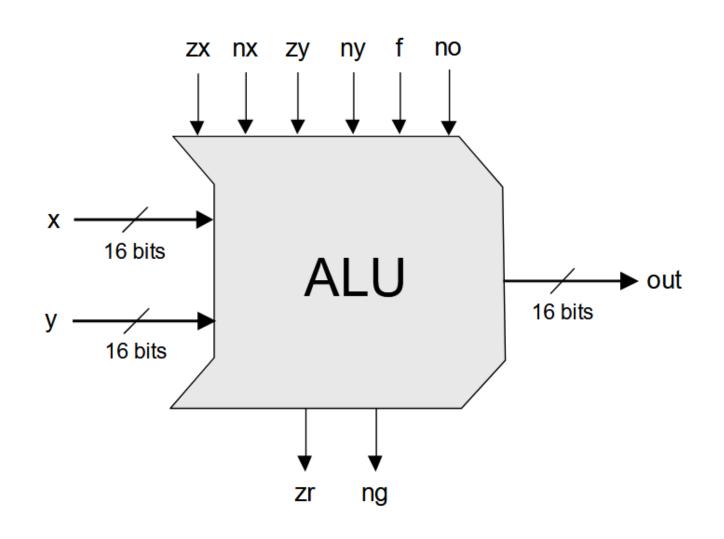
ALU implementation

Inputs:

- x: 16-bit value
- y: 16-bit value
- zx: if true, sets x to zero
- nx: if true, sets x to !x
- zy: if true, sets y to zero
- ny: if true, sets y to !y
- f: if true, computes out = x + y; else computes out = x AND y
- no: if true, sets out = !out

Outputs:

- out: 16-bit value
- zr: true when out == 0; false otherwise
- ng: true when out < 0; false otehrwise



Derive settings that compute the Boolean function out(x,y) = x&y

ZX	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out = x&y	if no then out=!out	out(x,y)
						x&y

Derive settings that compute the Boolean function out(x,y) = x+y

ZX	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out = x&y	if no then out=!out	out(x,y)
						х+у

Derive settings that compute the Boolean function out(x,y) = 0

ZX	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out = x&y	if no then out=!out	out(x,y)
						0

Derive settings that compute the Boolean function out(x,y) = 1

ZX	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out = x&y	if no then out=!out	out(x,y)
						1

Verify that the following settings compute the Boolean function out(x,y) = x-1

ZX	nx	zy	ny	f	no	out
if zx then x=0	if nx then x=!x	if zy then y=0	if ny then y=!y	if f then out=x+y else out = x&y	if no then out=!out	out(x,y)
0	1	1	1	1	1	x+1

Verify that the previous settings computes the Boolean function out(x,y) = x+1

Let x = 0x6 and y = 0x9

How it works: Boolean algebra Insights

$$x + 1 = !(!x + 1111)$$

$$-x = !(x + 1111)$$

$$x - y = !(!x + y)$$

$$x = x \& 1111$$

$$0 = x & 0000$$

and others...

Exercise: Outputs

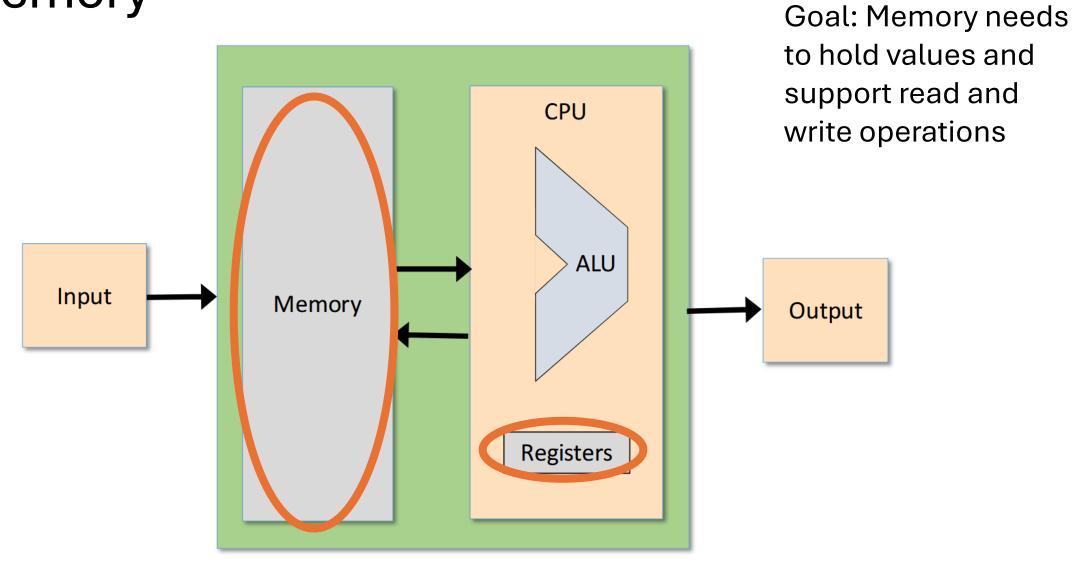
How can we test if the output is zero?

How can we test if the output is negative?

Hint: You can access single bits from a value, e.g. x[2]

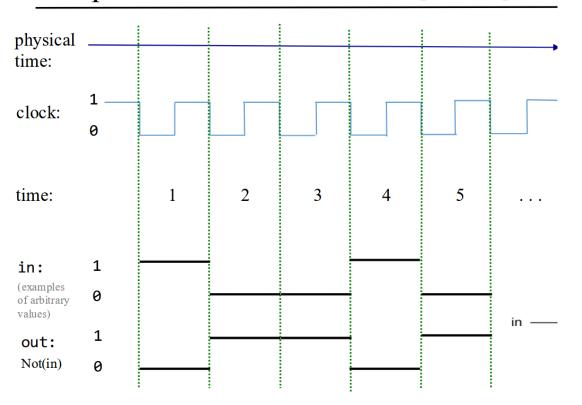
Exercise: Connect components to implement the ALU

Memory

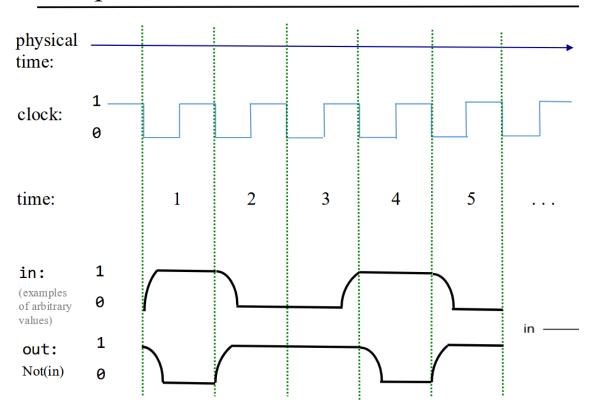


Recall: Representing time in hardware

Chip behavior over time (example: Not gate)



Chip behavior over time (example: Not gate)



Desired / idealized behavior of the in and out signals:

That's how we want the hardware to behave

Actual behavior of the in and out signals:

Influenced by physical time delays

Time and memory

Memory only works along side a concept of time

Need to create a mechanism that "knows" what its value was at the previous time

step

Hardware needs time to settle into high/low values

Solution: Clock time step is long enough to hide fluctuations
Only change state when each time cycle ends
Clock hardware is based on an oscillator

s tick/tock signal

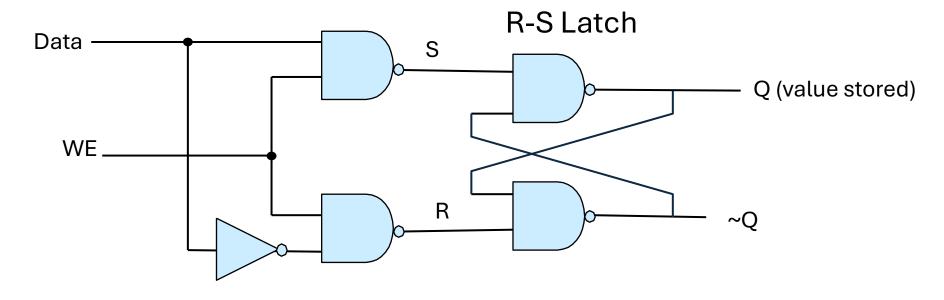
in

load

Register

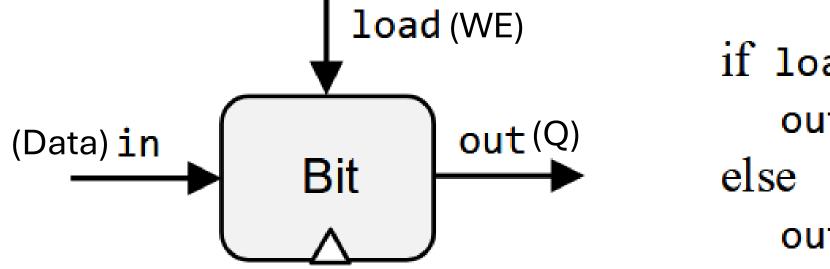
NOTE: In contrast, combinatorial gates react immediately to input

Recall: Gated R-S Latch



Data	WE	S	R	Q
0	0			
0	1			
1	0			
1	1			

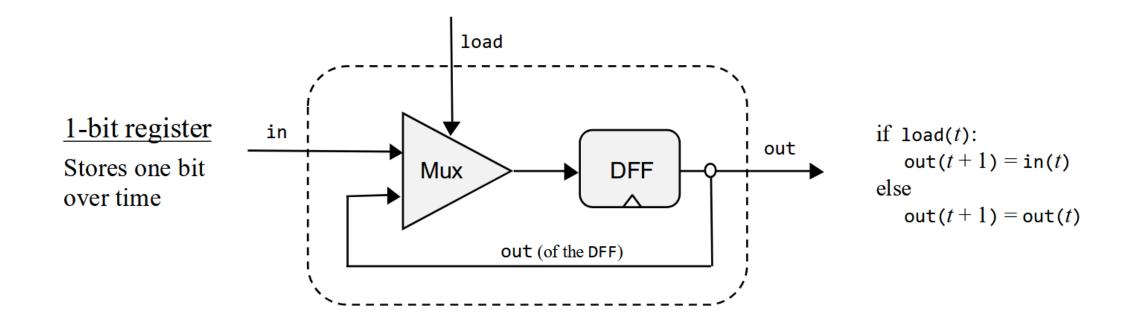
Data flip-flop (DFF): 1-bit register



1-bit register

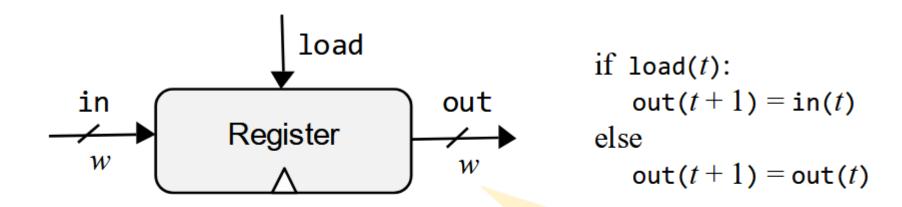
if
$$load(t)$$
:
 $out(t+1) = in(t)$
else
 $out(t+1) = out(t)$

Data flip-flop (simplified implementation)



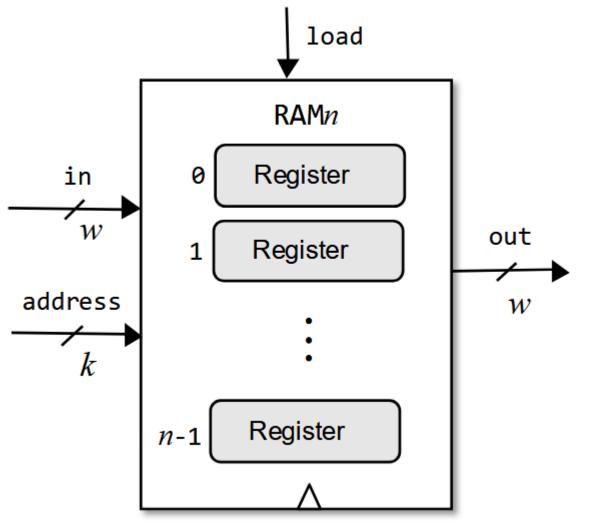
To read, simply get the value of out To write, set in = newValue and load = true

Register



We'll focus on bit width w = 16, without loss of generality

Random Access Memory (RAM)



Question: If RAM has N registers, how many bits do we need for the address?

Example: Suppose RAM has 8 registers.

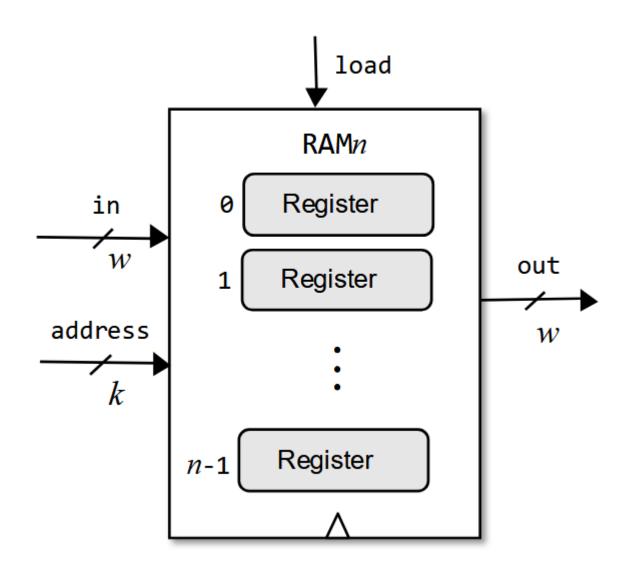
RAM Behavior

If load == 0, the RAM maintains its state

If load == 1, RAM[address] is set to the value of in

The loaded value will be emitted by out from the next time-step (cycle) onward

(Only one RAM register is selected; All the other registers are not affected)



RAM Usage

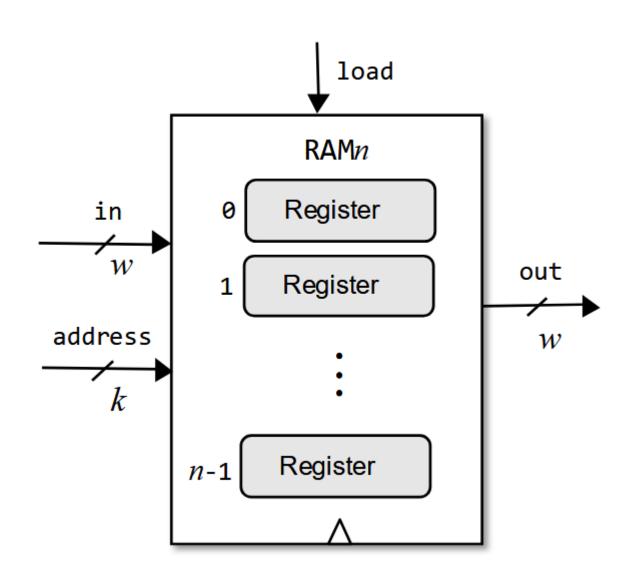
To read:

```
set address = i
probe out
(out = RAM[i] always)
```

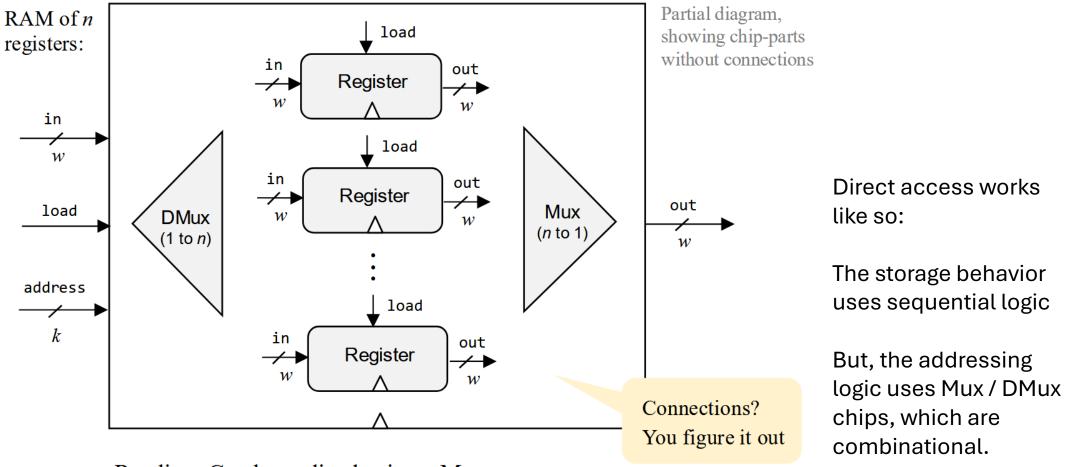
To write:

```
set address = i
set in = newValue
set load = true
(R[i] = newValue)
```

Any random register can be read/writte in one time cycle (thus the name RAM)



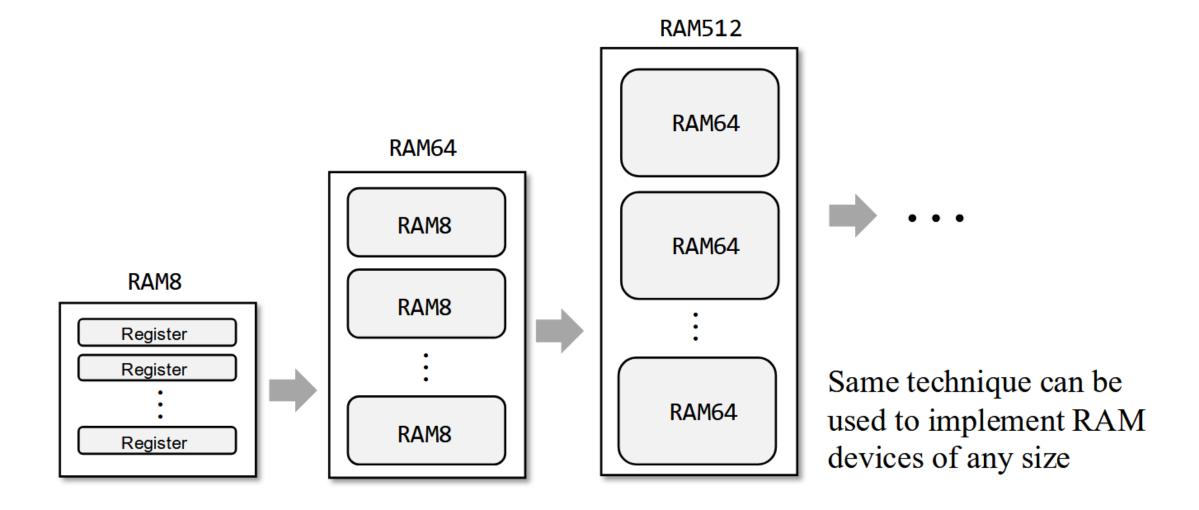
RAM implementation



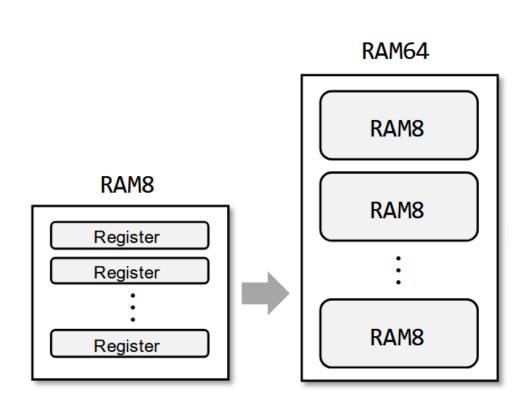
Reading: Can be realized using a Mux

Writing: Can be realized using a DMux

Larger blocks of RAM



Example: RAM addressing

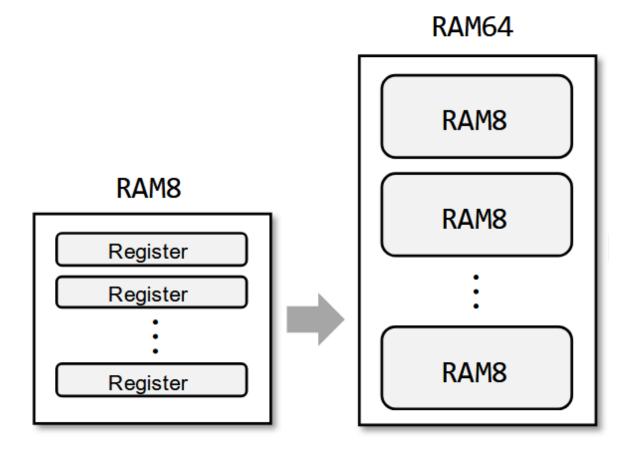


Question: If RAM has N registers, how many bits do we need for the address?

Example: Suppose RAM has 8 registers.

Example: RAM addressing

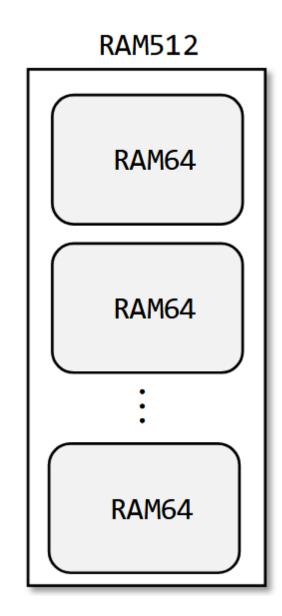
Suppose we are working with RAM64. How many bits do we need? What are the base addresses of each subblock?



Example: RAM addressing

Suppose we are working with RAM512. How many bits do we need?

What are the base addresses of each subblock?

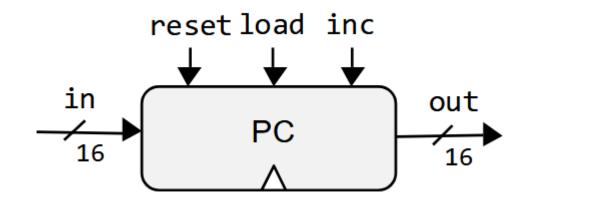


RAM chips needed for Hack

NOTE: In our simulator, all addresses are 16 bits; however, only a subset of bits are used for each memory layer

chip name	n	<u>k</u>
RAM8	8	3
RAM64	64	6
RAM512	512	9
RAM4K	4096	12
RAM16K	16384	14

Counter



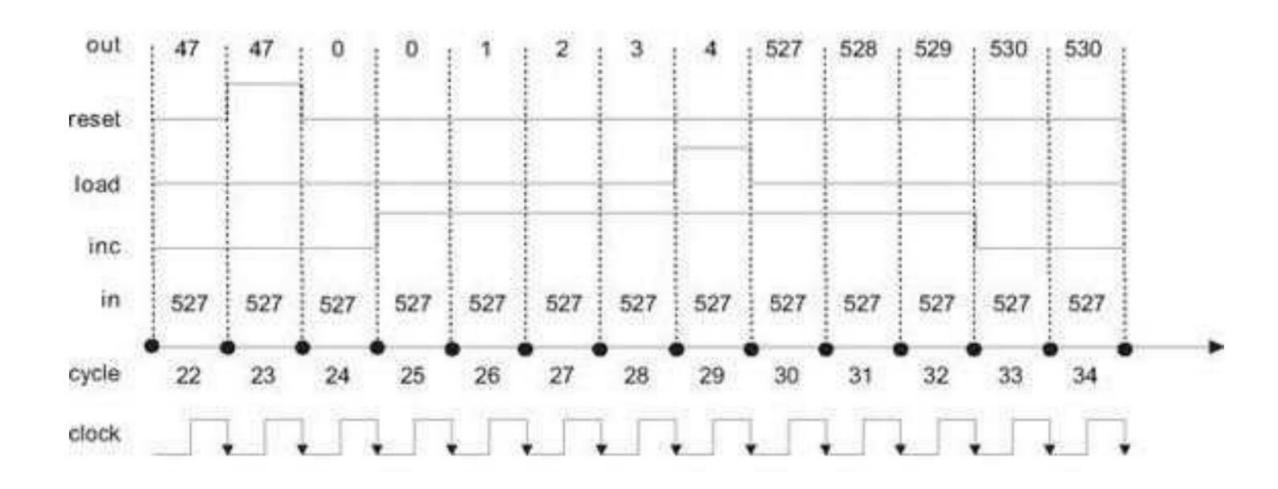
```
if reset(t): out(t+1) = 0
else if load(t): out(t+1) = in(t)
else if inc(t): out(t+1) = out(t) + 1
else out(t+1) = out(t)
```

Implementation is based on a register (sub-class)

Additional gates (Mux16, Inc16) are added to the DFF to support the different features: reset, load, inc

Will be used for storing the address of the next instruction

Counter Example



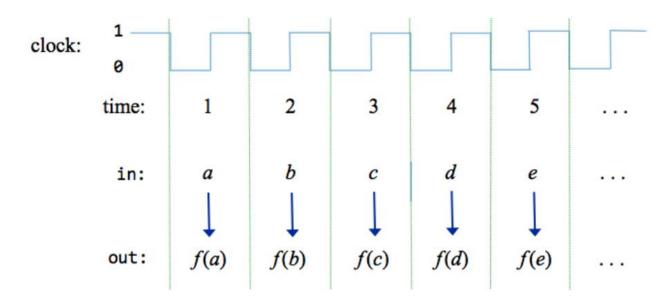
Recap: Sequential vs. Combinatorial Logic

Combinational logic

The output depends on current inputs only

The clock is used to stabilize outputs

Used for building chips that do calculations



Sequential logic

The output depends on:

- Previous inputs
- And, optionally, also on current inputs

Used for building memory chips (registers, RAM)

