
Agenda

Hack, the big picture: simulation from gates to computer

Hack Hardware Architecture
Gates revisited: Theory 
ALU Implementation
Storage Implementation



The big picture: Nand to Tetris

Semester Goal: Build a computer 
from first principles

Idea: Code is translated to 
hardware instructions through 
multiple layers of abstraction



The big picture: Hack

Today: finish talking 
about these 
components



The big picture: Hack

Next: How our hardware 
components fit together 
and how we can 
program it



The big picture: Hack

Next: Human readable 
machine instructions



The big picture: Hack

Compiling high-level 
code (like C or JAVA) into 
assembly language



The big picture: Hack

(Maybe) Implement OS-
level system libraries for 
the keyboard, 
screen,memory, etc



Gates revisited: theory

Recall: Representations in binary

A binary variable can have two possible states (0 or 1)

Two binary variables can have 4 possible states (00, 01, 10, 11)

Three binary variables can have _____ possible states

N binary variables can have have ______ possible states



Boolean functions

A Boolean function operates on Boolean variables and returns a 
Boolean variable

examples: AND, OR, NOT, NAND, etc

Notation: 
f(x, y) → AND(x, y)
x f y → x AND y



Example: How many Boolean functions exist 
over two binary variables?

A B Out

0 0 ?

0 1 ?

1 0 ?

1 1 ?



Example Boolean functions of two variables

Function 0 0 1 1

0 1 0 1

Constant 0 0 0 0 0

x 0 0 1 1

Equivalence 1 0 0 1

Constant 1 1 1 1 1



Exercise: Consider the function “if A then B”
A B f(A, B)

0 0 1

0 1 1

1 0 0

1 1 1

Construct a composite gate 
that implements this 
function



Example: How many Boolean functions exist 
over N binary variables?

We can represent a lot of functions using just binary variables....



Fun fact: Any Boolean function can be realized 
using only Nand

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

A Out

0 1

1 0

Not(x) = 
And(x, y) = 
Or(x, y) =  

Nand(x, y) And(x, y) Or(x, y) Not(x)



Fun fact: Any Boolean function can be realized 
using only Nand

Proof: 

Any Boolean function can be expressed as a truth table. 

Any truth table can be expressed as a Boolean function 
using only Not, And, and Or (using Disjunctive Normal 
Form)

Note that And, Not, and Or can be defined using Nand



Arithmetic Logic Unit (ALU)
Goal: The ALU is a 
component for 
computing 
expressions



ALU
Idea: Computes a given function 
on two n-bit input values, and
outputs an n-bit value



Exercise/Review:  Using Mux logic to build a 
programmable gate

Suppose we want to build a gate that 
behaves like AND when sel = 0 and 
behaves like OR when sel = 1.

On the next slide:
1. Draw the truth table
2. Draw the corresponding gate diagram 



Exercise/Review:  Using Mux logic to build a 
programmable gate
a b sel output



Exercise/Review: Multiplexor
Express Mux in terms of and, or, not



Exercise/Review: Demultiplexor 

Idea: Route a single input value to one of several destinations

Express DMux in terms of and, or, not



ALU implementation
Inputs:
• x: 16-bit value 
• y: 16-bit value
• zx: if true, sets x to zero
• nx: if true, sets x to !x
• zy: if true, sets y to zero
• ny: if true, sets y to !y
• f: if true, computes out = x + y; else 

computes out = x AND y
• no: if true, sets out = !out

Outputs:
• out: 16-bit value
• zr: true when out == 0; false otherwise
• ng: true when out < 0; false otehrwise



ALU Example:

zx nx zy ny f no out

if zx 
then 
x=0

if nx 
then 
x=!x

if zy 
then 
y=0

if ny 
then 
y=!y

if f then 
out=x+y
else 
out = x&y

if no 
then 
out=!out

out(x,y)

x&y

Derive settings that compute the Boolean function out(x,y) = x&y



ALU Example:

zx nx zy ny f no out

if zx 
then 
x=0

if nx 
then 
x=!x

if zy 
then 
y=0

if ny 
then 
y=!y

if f then 
out=x+y
else 
out = x&y

if no 
then 
out=!out

out(x,y)

x+y

Derive settings that compute the Boolean function out(x,y) = x+y



ALU Example:

zx nx zy ny f no out

if zx 
then 
x=0

if nx 
then 
x=!x

if zy 
then 
y=0

if ny 
then 
y=!y

if f then 
out=x+y
else 
out = x&y

if no 
then 
out=!out

out(x,y)

0

Derive settings that compute the Boolean function out(x,y) = 0



ALU Example:

zx nx zy ny f no out

if zx 
then 
x=0

if nx 
then 
x=!x

if zy 
then 
y=0

if ny 
then 
y=!y

if f then 
out=x+y
else 
out = x&y

if no 
then 
out=!out

out(x,y)

1

Derive settings that compute the Boolean function out(x,y) = 1



ALU Example:

zx nx zy ny f no out

if zx 
then 
x=0

if nx 
then 
x=!x

if zy 
then 
y=0

if ny 
then 
y=!y

if f then 
out=x+y
else 
out = x&y

if no 
then 
out=!out

out(x,y)

0 1 1 1 1 1 x+1

Verify that the following settings compute the Boolean function out(x,y) = x-1



ALU Example

Verify that the previous settings computes the Boolean function 
out(x,y) = x+1

Let x = 0x6 and y = 0x9



How it works: Boolean algebra Insights

x + 1 = !(!x + 1111)

–x = !(x + 1111)

x – y = !(!x + y)

x = x & 1111

0 = x & 0000

and others...



Exercise: Outputs

How can we test if the output is zero?

How can we test if the output is negative?

Hint: You can access single bits from a value, e.g. x[2]  



Exercise: Connect components to implement 
the ALU



Memory Goal: Memory needs 
to hold values and 
support read and 
write operations



Recall: Representing time in hardware



Time and memory

Memory only works along side a concept of time
Need to create a mechanism that “knows” what its value was at the previous time 
step

Hardware needs time to settle into high/low values

Solution: Clock time step is long enough to hide fluctuations
Only change state when each time cycle ends
Clock hardware is based on an oscillator

NOTE: In contrast, combinatorial gates react immediately to input



Recall: Gated R-S Latch

Q (value stored)

~Q

S

R

R-S Latch
Data

WE

Data WE S R Q

0 0

0 1

1 0

1 1



Data flip-flop (DFF): 1-bit register

(WE)

(Q)(Data)



Data flip-flop (simplified implementation)

To read, simply get the value of out
To write, set in = newValue and load = true



Register



Random Access Memory (RAM)
Question: If RAM has N 
registers, how many bits do 
we need for the address?

Example: Suppose RAM has 
8 registers.



RAM Behavior
If load == 0, the RAM maintains its state

If load == 1, RAM[address] is set to the 
value of in

The loaded value will be emitted by out 
from the next time-step (cycle) onward

(Only one RAM register is selected; All 
the other registers are not affected)



RAM Usage
To read: 

set address = i
probe out
(out = RAM[i] always)

To write:
set address = i
set in = newValue
set load = true
(R[i] = newValue)

Any random register can be read/written 
in one time cycle (thus the name RAM) 



RAM implementation

Direct access works 
like so:

The storage behavior 
uses sequential logic

But, the addressing 
logic uses Mux / DMux 
chips, which are 
combinational.



Larger blocks of RAM



Example: RAM addressing
Question: If RAM has N 
registers, how many bits do 
we need for the address?

Example: Suppose RAM has 
8 registers.



Example: RAM addressing
Suppose we are working with RAM64. How many bits do we need?
What are the base addresses of each subblock?



Example: RAM addressing

Suppose we are 
working with 
RAM512. How many 
bits do we need?

What are the base 
addresses of each 
subblock?



RAM chips needed for Hack

NOTE: In our simulator, all 
addresses are 16 bits; 
however, only a subset of 
bits are used for each 
memory layer



Counter

Implementation is based on a register (sub-class)

Additional gates (Mux16, Inc16) are added to the DFF to support the different 
features: reset, load, inc

Will be used for storing the address of the next instruction



Counter Example



Recap: Sequential vs. Combinatorial Logic
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